Transcription factories in a Hela cell [from Cook PR (1999) Science 284, 1790]

Nuclear Structure and Function Research Group

Peter R Cook's reading lists, etc

based on his book 'Principles of Nuclear Structure and Function'

Book / Reading lists / Chapter 2: Structure
Resources for CHAPTER 2: STRUCTURE
Updated on 10 March, 2016

Overview of nuclear structure
        Box 2-1. Preparing metaphase spreads
The nuclear membrane
    The nuclear lamina
        Box 2-2. Intermediate filaments
    Nuclear pores
        Box 2-3. Identifying proteins in large structures by mass spectrometry
    Importing proteins of >60 kD
        Box 2-4. Autoradiography
    RNA export
    Is the nuclear membrane an ion barrier?
The nucleolus
Packaging chromatin during interphase
    Artifacts
        Box 2-5. Isolating nuclei
        Box 2-6. Nuclear matrices and scaffolds
        Box 2-7. Nucleoids
    The nucleosome
    The zig-zagging nucleosomal string
    Chromatin loops
        Box 2-8. Position-effect variegation in Drosophila
    Chromatin 'clouds'
    Chromosome territories
        Box 2-9. In situ hybridization
        Box. Chromosome conformation capture (3C)
    Chromatin dynamics
Nucleoskeletons and nuclear sub-compartments
        Box 2-10. Acute promyelocytic leukemia
Chromosomes
    Elements of yeast chromosomes
    Telomeres
        Box 2-11. Aging
    Chromosome bands
    Models for chromosome organization
    Polytene chromosomes

Overview of nuclear structure
Figure: 2-1, 2-2, 2-3.
Additional reference:
Misteli, T. (2010). Higher-order genome organization in human disease. Cold Spring Harb. Perspect. Biol. 2, a000794. [PubMed]
Web link:
http://www.cellnucleus.com/ Links to tutorials, movies, and references on nuclear structure and dynamics.

Box 2-1. Preparing metaphase spreads
Reference:
Macgregor, H.C. and Varley, J.B. (1988). 'Working with animal chromosomes'. 2nd edition. John Wiley, Chichester, UK.
Web link:
http://www.kumc.edu/gec/prof/cytogene.html Cytogenetic resources
http://gslc.genetics.utah.edu/units/disorders/karyotype/  Make a karyotype.

The nuclear membrane
Figure: 2-4.
Reference:
Gerace, L. and Foisner, R. (1994). Integral membrane proteins and dynamic organization of the nuclear envelope. Trends Cell Biol. 4, 127-131.
Nigg, E.A. (1997). Nucleocytoplasmic transport: signals, mechanisms and regulation. Nature 386, 779-787. [PubMed]
Additional reference:
Hetzer, M.W. (2010). The nuclear envelope. Cold. Spring. Harb. Perspect. Biol. 2, a000539. [PubMed]
Wilson, K.L., and Berk, J.M. (2010). The nuclear envelope at a glance. J. Cell Sci. 123, 1973-1978. [PubMed]
Rothballer, A., and Kutay, U. (2012). SnapShot: The nuclear envelope I and II. Cell 150, 868-868 and 1084-1084. [PubMed] and [PubMed]
Web link:
http://msg.ucsf.edu/sedat/ Interactions of chromatin with the envelope.

The nuclear lamina
Reference:
Paddy, M.R., Agard, D.A. and Sedat, J.W. (1992). An extended view of nuclear lamin structure, function, and dynamics. Seminars in Cell Biol. 3, 255-256.
Additional reference:
Ho, C.Y., and Lammerding, J. (2012). Lamins at a glance. J Cell Sci 125, 2087-2093. [PubMed]
Zuela, N., Bar, D.Z., and Gruenbaum, Y. (2012). Lamins in development, tissue maintenance and stress. EMBO Rep. 13, 1070-1078. [PubMed]

Box 2-2. Intermediate filaments
Reference:
Fuchs, E. and Cleveland, D.W. (1998). A structural scaffolding of intermediate filaments in health and disease. Science 279, 514-519. [PubMed]
Additional reference:
Coulombe, P.A., Ma, L., Yamada, S. and Wawesik, M. (2001). Intermediate filaments at a glance. J. Cell Sci. 114, 4345-4347. [Full text]
Herrmann, H., Bar, H., Kreplak, L., Strelkov, S.V., and Aebi, U. (2007). Intermediate filaments: from cell architecture to nanomechanics. Nat. Rev. Mol. Cell. Biol. 8, 562-573. [PubMed]
Web link:
Go to Intermediate filaments at a glance from J Cell Sci.

Nuclear pores
Figure: 2-5, 2-6.
Reference:
Keminer, O., Siebrasse, J.-P., Zerf, K. and Peters, R. (1999). Optical recording of signal-mediated protein transport through single nuclear pore complexes. Proc. Natl. Acad. Sci. USA 96, 11842-11847. [PubMed] [Full text]
Wente, S.R. (2000). Gatekeepers of the nucleus. Science 288, 1374-1377. [PubMed]
Additional reference:
Bootman, M.D., Fearnley, C., Smyrnias, I., MacDonald, F., and Roderick, H.L. (2009). An update on nuclear calcium signalling. J. Cell Sci. 122, 2337-2350. [PubMed]
Carmody, S.R., and Wente, S.R. (2009). mRNA nuclear export at a glance. J Cell Sci 122, 1933-1937. [PubMed]
Lowe, A.R., Siegel, J.J., Kalab, P., Siu, M., Weis, K., and Liphardt, J.T. (2010). Selectivity mechanism of the nuclear pore complex characterized by single cargo tracking. Nature 467, 600-603. [PubMed]
Grünwald, D., Singer, R.H., and Rout, M. (2011). Nuclear export dynamics of RNA-protein complexes. Nature 475, 333-341. [PubMed]
Strambio-De-Castillia, C., Niepel, M., and Rout, M.P. (2010). The nuclear pore complex: bridging nuclear transport and gene regulation. Nat. Rev. Mol. Cell Biol. 11, 490-501. [PubMed]
Web link:
http://jcs.biologists.org/cgi/content/full/113/22/3885/DC1 Link to views of the pore.

Box 2-3. Identifying proteins in large structures by mass spectrometry
Reference:
Wigge, P.A., Jensen, O.N., Holmes, S., Soues, S., Mann, M. and Kilmartin, J.V. (1998). Analysis of the Saccharomyces spindle pole by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. J. Cell Biol. 141, 967-977. [PubMed] [Full text]
Additional reference:
Leitner, A., and Aebersold, R. (2013). SnapShot: mass spectrometry for protein and proteome analyses. Cell 154, 252-252. [PubMed]
Web link:
http://info.med.yale.edu/wmkeck/#msprochem Descriptions of different techniques.

Importing proteins of >60 kD
Table: 2-1.
Figure: 2-7.
Reference:
Mattaj, I.W. and Englmeier, L. (1998). Nucleocytoplasmic transport. Annu Rev. Biochem. 67, 265-306. [PubMed]
Nakielny, S. and Dreyfuss, G. (1999). Transport of proteins and RNAs in and out of the nucleus. Cell 99, 677-690.
Additional reference:
Joseph, J. (2006). Ran at a glance. J. Cell Sci. 119, 3481-3484. [PubMed]
Lange, A., Mills, R.E., Lange, C.J., Stewart, M., Devine, S.E., and Corbett, A.H. (2007). Classical nuclear localization signals: definition, function, and interaction with importin alpha. J. Biol. Chem. 282, 5101-5105. [PubMed]
Stewart, M. (2007). Molecular mechanism of the nuclear protein import cycle. Nat. Rev. Mol. Cell Biol. 8, 195-208. [PubMed]

Box 2-4. Autoradiography
Reference:
Wilkinson, D.G. (1992). 'In situ hybridization: a practical approach'. Oxford University Press, Oxford.

RNA export
Reference:
Mattaj, I.W. and Englmeier, L. (1998). Nucleocytoplasmic transport. Annu Rev. Biochem. 67, 265-306. [PubMed]
Nakielny, S. and Dreyfuss, G. (1999). Transport of proteins and RNAs in and out of the nucleus. Cell 99, 677-690.
Additional reference:
Darzacq, X., Singer, R.H., and Shav-Tal, Y. (2005). Dynamics of transcription and mRNA export. Curr. Opin. Cell Biol. 17, 332-339. [PubMed]
Iborra, F.J., Jackson, D.A. and Cook, P.R. (2000). Transport of mRNA through nuclear pores: apparent entry from the sides into dedicated pores. J. Cell Sci. 113, 291-302. [PubMed] [Text]
Carmody, S.R., and Wente, S.R. (2009). mRNA nuclear export at a glance. J. Cell Sci. 122, 1933-1937. [PubMed]

Is the nuclear membrane an ion barrier?
Reference:
Malviya, A.N. and Rogue, P.J. (1998). 'Tell me where is calcium bred': clarifying the roles of nuclear calcium. Cell 92, 17-23.
Additional reference:
Bootman, M.D., Fearnley, C., Smyrnias, I., Macdonald, F., and Roderick, H.L. (2009). An update on nuclear calcium signalling. J Cell Sci 122, 2337-2350. [PubMed]
Michelangeli, F., Ogunbayo, O.A., and Wootton, L.L. (2005). A plethora of interacting organellar Ca2+ stores. Curr. Opin. Cell Biol. 17, 135-140. [PubMed]
Monserrate, J.P., and York, J.D. (2010). Inositol phosphate synthesis and the nuclear processes they affect. Curr. Opin. Cell Biol. 22, 365-373. [PubMed]

The nucleolus
Figure: 2-8.
Reference:
Shaw, P.J. and Jordan, E.G. (1995). The nucleolus. Annu. Rev. Cell Dev. Biol. 11, 93-121. [PubMed]
Pederson, T. (1998). The plurifunctional nucleolus. Nucl. Acids Res. 26, 3871-3876. [PubMed] [Full text]
Additional reference:
Boisvert, F.M., van Koningsbruggen, S., Navascues, J., and Lamond, A.I. (2007). The multifunctional nucleolus. Nat. Rev. Mol. Cell Biol. 8, 574-585. [PubMed]
McKeown, P.C., and Shaw, P.J. (2009). Chromatin: linking structure and function in the nucleolus. Chromosoma 118, 11-23. [PubMed]
Thomson, E., Ferreira-Cerca, S., and Hurt, E. (2013). Eukaryotic ribosome biogenesis at a glance. J Cell Sci 126, 4815-4821. [PubMed]

Web link:
http://jcs.biologists.org/cgi/content/full/118/7/1335 The nucleolus from 'Cell Science at a glance'.

Packaging chromatin during interphase
Figure: 2-9.
Table: 2-2.
Reference:
Cook, P.R. (1995). A chromomeric model for nuclear and chromosome structure. J. Cell Sci. 108, 2927-2935. [PubMed] [Full text]
Wolffe, A. (1998). 'Chromatin: structure and function'. 3rd edition. Academic Press, London.
Additional reference:
Feuerborn, A., and Cook, P.R. (2015). Why the activity of a gene depends on its neighbors. Trends Genet. 91, 483-490. [PubMed]
Gross, D.S., Chowdhary, S., Anandhakumar, J., and Kainth, A.S. (2015). Chromatin. Curr Biol 25, R1158-63. [PubMed]
Misteli, T. (2010). Higher-order genome organization in human disease. Cold Spring Harb. Perspect. Biol. 2, a000794. [PubMed]
Papantonis, A., and Cook, P.R. (2013). Transcription factories; genome organization and gene regulation. Chem. Rev. 113, 8683-8705. [PubMed]

Artifacts
Figure: 2-10, 2-11.
Reference:
Cook, P.R. (1988). The nucleoskeleton: artefact, passive framework or active site? J. Cell Sci. 90, 1-6.
Van Holde, K. and Zlatanova, J. (1995). Chromatin higher order structure: chasing a mirage? J. Biol. Chem. 270, 8373-8376. [Full text]
Additional reference:
Pederson, T. (2000). Half a century of 'the nuclear matrix'. Mol. Biol. Cell 11, 799-805. [PubMed] [Full text]

Box 2-5. Isolating nuclei
Reference:
Marzluff, W.F. and Huang, R.C.C. (1984). Transcription of RNA in isolated nuclei. In 'Transcription and translation: a practical approach'. Ed B.D. Hames and S.J. Higgins. IRL Press, Oxford.

Box 2-6. Nuclear matrices and scaffolds
Reference:
Roberge, M. and Gasser, S.M. (1992). DNA loops: structural and functional properties of scaffold-attached regions. Molec. Micro. 6, 419-423. [PubMed]
Additional reference:
Razin, S.V., Iarovaia, O.V., and Vassetzky, Y.S. (2014). A requiem to the nuclear matrix: from a controversial concept to 3D organization of the nucleus. Chromosoma 123, 217-224. [PubMed]

Box 2-7. Nucleoids
Reference:
Jackson, D.A., McCready, S.J. and Cook, P.R. (1984). Replication and transcription depend on attachment of DNA to the nuclear cage. J. Cell Sci. Suppl. 1, 59-79. [PubMed]

The nucleosome
Figure: 2-12, 2-13, 2-14, 2-15.
Reference:
Luger, K., Mäder, A.W., Richmond, R.K., Sargent, D.F. and Richmond, T.J. (1997). Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251-260. [PubMed]
Kornberg, R.D. and Lorch, Y. (1999). Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98, 285-294.
Additional reference:
Deal, R.B., Henikoff, J.G., and Henikoff, S. (2010). Genome-wide kinetics of nucleosome turnover determined by metabolic labeling of histones. Science 328, 1161-1164. [PubMed]
Zlatanova, J., Bishop, T.C., Victor, J.M., Jackson, V., and van Holde, K. (2009). The nucleosome family: dynamic and growing. Structure 17, 160-171. [PubMed]
Web link:
http://sgi.bls.umkc.edu/waterborg/chromat/chromatn.html J Waterborg's page, with a good slide show.

The zig-zagging nucleosomal string
Figure: 2-16.
Reference:
Woodcock, C.L and Horowitz, R.A. (1995). Chromatin organization re-viewed. Trends Cell Biol. 5, 272-277.
Additional reference:
Hansen, J.C. (2012). Human mitotic chromosome structure: what happened to the 30-nm fibre? EMBO J. 31, 1621-1623. [PubMed]
Nishino, Y., Eltsov, M., Joti, Y., Ito, K., Takata, H., Takahashi, Y., Hihara, S., Frangakis, A.S., Imamoto, N., Ishikawa, T., and Maeshima, K. (2012). Human mitotic chromosomes consist predominantly of irregularly folded nucleosome fibres without a 30-nm chromatin structure. EMBO J. 31, 1644-1653. [PubMed]
Schlick, T., Hayes, J., and Grigoryev, S. (2012). Toward convergence of experimental studies and theoretical modeling of the chromatin fiber. J. Biol. Chem. 287, 5183-5191. [PubMed]

Chromatin loops
Figure: 2-17, 2-18, 2-19, 2-20.
Reference:
Macgregor, H.C. and Varley, J.B. (1988). 'Working with animal chromosomes'. 2nd edition. John Wiley, Chichester, UK.
Jackson, D.A., Dickinson, P. and Cook, P.R. (1990). The size of chromatin loops in HeLa cells. EMBO J. 9, 567-571. [PubMed]
Jackson, D.A., Bartlett, J. and Cook, P.R. (1996). Sequences attaching loops of nuclear and mitochondrial DNA to underlying structures in human cells: the role of transcription units. Nucl. Acids Res. 24, 1212-1219. [PubMed] [Full text]
Jackson, D.A. and Cook, P.R. (1993). Transcriptionally-active minichromosomes are attached transiently in nuclei through transcription units. J. Cell Sci. 105, 1143-1150. [PubMed]
Schedl, P. and Grosveld, F. (1996). Domains and boundaries. In 'Chromatin structure and gene expression' (Ed. Elgin, S.C.R.). IRL Press at Oxford University Press, Oxford.
Additional reference:
Feuerborn, A., and Cook, P.R. (2015). Why the activity of a gene depends on its neighbors. Trends Genet. 91, 483-490. [PubMed]
Papantonis, A., and Cook, P.R. (2013). Transcription factories; genome organization and gene regulation. Chem. Rev. 113, 8683-8705. [PubMed]
Morgan, G.T. (2002). Lampbrush chromosomes and associated bodies: new insights into principles of nuclear structure and function. Chromosome Research 10, 177-200. [PubMed]
Ohlsson, R., and Gondor, A. (2007). The 4C technique: the ‘Rosetta stone’ for genome biology in 3D? Curr. Opin. Cell Biol. 19, 317-320. [PubMed]

Box 2-8. Position-effect variegation in Drosophila
Reference:
Pirotta, V. and Rastelli, L. (1994). white gene expression, repressive chromatin domains and homeotic gene regulation in Drosophila. BioEssays 16, 549-556. [PubMed]
Wakimoto, B.T. (1998). Beyond the nucleosome: epigenetic aspects of position-effect variegation in Drosophila. Cell 93, 321-324.
Additional reference:
Ebert, A., Lein, S., Schotta, G., and Reuter, G. (2006). Histone modification and the control of heterochromatic gene silencing in Drosophila. Chromosome Res. 14, 377-392. [PubMed]
Feng, Y.-Q., Lorincz, M.C., Fiering, S., Greally, J.M. and Bouhassira, E.E. (2001). Position effects are influenced by the orientation of a transgene with respect to flanking chromatin. Mol. Cell. Biol. 21, 298-309. [PubMed] [Full text]
Schotta, G., Ebert, A., Dorn, R., and Reuter, G. (2003). Position-effect variegation and the genetic dissection of chromatin regulation in Drosophila. Semin. Cell Dev. Biol. 14, 67-75. [PubMed]
Zhimulev, I.F., Belyaeva, E.S., Semeshin, V.F., Koryakov, D.E., Demakov, S.A., Demakova, O.V., Pokholkova, G.V., and Andreyeva, E.N. (2004). Polytene chromosomes: 70 years of genetic research. Int. Rev. Cytol. 241, 203-275. [PubMed]
Web link:
http://flybase.org Images of Drosophila (go to 'ImageBrowse').

Chromatin 'clouds'
Figure: 2-21.
Reference:
Iborra, F.J., Pombo, A., Jackson, D.A. and Cook, P.R. (1996). Active RNA polymerases are localized within discrete transcription 'factories' in human nuclei. J. Cell Sci. 109, 1427-1436. [PubMed] [Full text]

Chromosome territories
Figure: 2-22.
Reference:
Hiraoka, Y., Agard, D.A. and Sedat, J.W. (1990). Temporal and spatial coordination of chromosome movement, spindle formation, and nuclear envelope breakdown during prometaphase in Drosophila melanogaster embryos. J. Cell Biol. 111, 2815-2828. [PubMed]
Cremer, T., Kurz, A., Zirbel, R., Dietzel, S., Rinke, B., Schrock, E., Speicher, M.R., Mathieu, U., Jauch, A., Emmerich, P., Scherthan, H., Reid, T., Cremer, C. and Lichter, P. (1993). Role of chromosome territories in the functional compartmentalization of the cell nucleus. Cold Spring Harb. Symp. Quant. Biol. 58, 777-792.
Additional reference:
Branco, M.R., and Pombo, A. (2006). Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations. PLoS Biol. 4, e138. [PubMed]
Cremer, T., and Cremer, M. (2010). Chromosome territories. Cold Spring Harb. Perspect. 2, a003889. [PubMed]
Misteli, T. (2010). Higher-order genome organization in human disease. Cold Spring Harb. Perspect. Biol. 2, a000794. [PubMed]
Roix, J.J., McQueen, P.G., Munson, P.J., Parada, L.A. and Misteli, T. (2003).  Spatial proximity of translocation-prone gene loci in human lymphomas.  Nat. Genet. 34, 287-291.  [PubMed]

Chromatin dynamics
Additional reference:
Lanctot, C., Cheutin, T., Cremer, M., Cavalli, G., and Cremer, T. (2007). Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat. Rev. Genet. 8, 104-115. [PubMed]

Box 2-9. In situ hybridization
Reference:
Wilkinson, D.G. (1992). 'In situ hybridization: a practical approach'. Oxford University Press, Oxford. 
Additional reference:
Levsky, J.M. and Singer, R.H. (2003).  Fluorescence in situ hybridization: past, present and future.  J. Cell Sci. 116, 2833-2838.  [PubMed]
Speicher, M.R., and Carter, N.P. (2005). The new cytogenetics: blurring the boundaries with molecular biology. Nat. Rev. Genet. 6, 782-792. [PubMed]
Web link:
http://www.protocol-online.net/cellbio/cytogenetics/cytogenetics.htm Various protocols.

Box. Chromosome conformation capture (3C)
Dekker, J., Rippe, K., Dekker, M., and Kleckner, N. (2002). Capturing chromosome conformation. Science 295, 1306-1311. [PubMed]
Hakim O., and Misteli, T. (2012). SnapShot: chromosome confirmation capture. Cell 148, 1068-1068. [PubMed]

Nucleoskeletons and nuclear sub-compartments
Figure: 2-23.
Reference:
Jackson, D.A. and Cook, P.R. (1988). Visualization of a filamentous nucleoskeleton with a 23 nm axial repeat. EMBO J. 7, 3667-3677. [PubMed]
Hozák, P., Sasseville, A. M-J., Raymond, R. and Cook. P.R. (1995). Lamin proteins form an internal nucleoskeleton as well as a peripheral lamina in human cells. J. Cell Sci. 108, 635-644. [PubMed] [Full text]
Lamond, A.I. and Earnshaw, W.C. (1998). Structure and function in the nucleus. Science 280, 547-553. [PubMed]
Additional reference:
Carmo-Fonseca, M., Berciano, M.T., and Lafarga, M. (2010). Orphan nuclear bodies. Cold Spring Harb. Perspect. Biol. 2, a000703. [PubMed]
Dahl, K.N., and Kalinowski, A. (2011). Nucleoskeleton mechanics at a glance. J. Cell Sci. 124, 675-678. [PubMed]
Herrmann, H., Bar, H., Kreplak, L., Strelkov, S.V., and Aebi, U. (2007). Intermediate filaments: from cell architecture to nanomechanics. Nat. Rev. Mol. Cell Biol. 8, 562-573. [PubMed]
de Lanerolle, P. (2012). Nuclear actin and myosins at a glance. J. Cell Sci 125, 4945-4949. [PubMed]
Simon, D.N., and Wilson, K.L. (2011). The nucleoskeleton as a genome-associated dynamic 'network of networks'. Nat. Rev. Mol. Cell Biol. 12, 695-708. [PubMed]
Web link:
http://npd.hgu.mrc.ac.uk  See protein content of different compartments in the Nuclear Protein Database.

Box 2-10. Acute promyelocytic leukemia
Reference:
Andre, C., Guillemin, M-C., Zhu, J., Koken, M.H.M., Quignon, F., Herve, L., Chelbi-Alix, M.K., Dhumeaux, D., Wang, Z.-Y., Degos, L., Chen, Z. and de The, H. (1996). The PML and PML/RARa domains: from autoimmunity to molecular oncology and from retinoic acid to arsenic. Exp. Cell Res. 229, 253-260. [PubMed] [Full text
Additional reference:
Lallemand-Breitenbach, V., and de Thé, H. (2010). PML nuclear bodies. Cold Spring Harb. Perspect. Biol 2, a000661. [PubMed]
Zhang, X.W. et al. (2010). Arsenic trioxide controls the fate of the PML-RARalpha oncoprotein by directly binding PML. Science 328, 240-243. [PubMed]
Web link:
http://cancernet.nci.nih.gov/cancertopics Go to the leukemia page.

Chromosomes
Figure: 2-24.
Reference:
Wagner, R.P., Maguire, M.P. and Stallings, R.L. (1993). 'Chromosomes: a synthesis'. Wiley-Liss, New York, USA.
Additional reference:
Marshall, O.J.., Chueh, A.C., Wong, L.H., and Choo, K.H. (2008). Neocentromeres: new insights into centromere structure, disease development, and karyotype evolution. Am. J. Hum. Genet. 82, 261-282. [PubMed]
Schueler, M.G., Higgins, A.W., Rudd, M.K., Gustashaw, K. and Willard, H.F. (2001). Genomic and genetic definition of a functional human centromere. Science 294, 109-115. [PubMed]
Web link:
http://www.chromosome.net Web site for chromosome researchers.
http://www.kumc.edu/gec/prof/cytogene.html Cytogenetic resources.

Elements of yeast chromosomes
Reference:
Murray, A.W. and Szostak, J.W. (1983). Construction of artificial chromosomes of yeast. Nature 305, 189-193. [PubMed]
Carbon, J. (1984). Yeast centromeres; structure and function. Cell 37, 351-353.
Additional reference:
Dawe, R.K., and Henikoff, S. (2006). Centromeres put epigenetics in the driver's seat. Trends Biochem. Sci 31, 662-669. [PubMed]
Ekwall, K. (2004).  The roles of histone modifications and small RNA in centromere function.  Chromosome Res. 12, 535-542.  [PubMed]
Pidoux, A.L. and  Allshire, R.C. (2004).  Kinetochore and heterochromatin domains of the fission yeast centromere.   Chromosome Res. 12, 521-34.  [PubMed]

Telomeres
Reference:
Griffith, J.D., Comeau, L., Rosenfeld, S., Stansel, R.M., Bianchi, A., Moss, H. and de Lange, T. (1999). Mammalian telomeres end in a large duplex loop. Cell 97, 503-514. [PubMed]
Additional reference:
Blackburn, E.H., Greider, C.W., and Szostak, J.W. (2006). Telomeres and telomerase: the path from maize, Tetrahymena and yeast to human cancer and aging. Nat. Med. 12, 1133-1138. [PubMed]
Sfeir, A. (2012). Telomeres at a glance. J Cell Sci 125, 4173-4178. [PubMed]
Shay, J.W., Reddel, R.R., and Wright, W.E. (2012). Cancer and telomeres--an ALTernative to telomerase. Science 336, 1388-1390. [PubMed].

Box 2-11. Aging
Additional reference:
Kaeberlein, M. (2010). Lessons on longevity from budding yeast. Nature 464, 513-519. [PubMed]
Kenyon, C.J. (2010). The genetics of ageing. Nature 464, 504-512. [PubMed]
Sahin, E., and Depinho, R.A. (2010). Linking functional decline of telomeres, mitochondria and stem cells during ageing. Nature 464, 520-528. [PubMed]

Chromosome bands
Reference:
Craig, J.M. and Bickmore, W.A. (1993). Chromosome bands - flavours to savour. BioEssays 15, 349-354. [PubMed]
Web link:
http://www.kumc.edu/gec/prof/cytogene.html Cytogenetic resources.

Models for chromosome organization
Figure: 2-25, 2-26, 2-27.
Reference:
Manuelidis, L. (1990). A view of interphase chromosomes. Science 250, 1533-1540. [PubMed]
Saitoh, Y. and Laemmli, U.K. (1994). Metaphase chromosome structure: bands arise from a differential folding path of the highly AT-rich scaffold. Cell 76, 609-622. [PubMed]
Cook, P.R. (1995). A chromomeric model for nuclear and chromosome structure. J. Cell Sci. 108, 2927-2935. [PubMed] [Full text]
Additional reference:
Casolari, J.M., Brown, C.R., Komili, S., West, J., Hieronymus, H. and Silver, P.A. (2004).  Genome-wide localization of the nuclear transport machinery couples transcriptional status and nuclear organization.  Cell 117, 427-439.  [PubMed]
Cook, P.R. (2010). A model for all genomes; the role of transcription factories. J. Mol. Biol. 395, 1–10. [PubMed]
Cornforth, M.N., Greulich-Bode, K.M., Loucas, B.D., Arsuaga, J., Vazquez, M., Sachs, R.K., Bruckner, M., Molls, M., Hahnfeldt, P., Hlatky, L. and Brenner, D.J. (2002). Chromosomes are predominantly located randomly with respect to each other in interphase human cells.  J. Cell Biol. 159, 237-244.  [PubMed]
Kireeva, N., Lakonishok, M., Kireev, I., Hirano, T. and Belmont, A.S. (2004).  Visualization of early chromosome condensation: a hierarchical folding, axial glue model of chromosome structure.  J. Cell Biol. 166, 775-785.  [PubMed]
Misteli, T. (2007). Beyond the sequence: cellular organization of genome function. Cell 128, 787-800. [PubMed]
Ono, T., Losada, A., Hirano, M., Myers, M.P., Neuwald, A.F. and Hirano, T. (2003).  Differential contributions of condensin I and condensin II to mitotic chromosome architecture in vertebrate cells.  Cell 115, 109-121.  [PubMed]
Schneider, R., and Grosschedl, R. (2007). Dynamics and interplay of nuclear architecture, genome organization, and gene expression. Genes Dev. 21, 3027-3043. [PubMed]
Swedlow, J.R. and Hirano, T. (2003).  The making of the mitotic chromosome: modern insights into classical questions.  Mol. Cell. 11, 557-569.  [PubMed]

Polytene chromosomes
Figure: 2-28.
Reference:
Wagner, R.P., Maguire, M.P. and Stallings, R.L. (1993). 'Chromosomes: a synthesis'. Wiley-Liss, New York, USA.
Additional reference:
Zhimulev, I.F., Belyaeva, E.S., Semeshin, V.F., Koryakov, D.E., Demakov, S.A., Demakova, O.V., Pokholkova, G.V., and Andreyeva, E.N. (2004). Polytene chromosomes: 70 years of genetic research. Int. Rev. Cytol. 241, 203-275. [PubMed]
Web link:
http://flybase.org/maps/chromosomes/maps.html Links to images/maps of polytene chromosomes.
http://msg.ucsf.edu/sedat//dros_polytene_chrom.html Images of polytene chromosomes fromJohn Sedat.

Top | Home | Maintained by Peter Cook |