Updated on 10 March, 2016
Overview of nuclear structure
Box 2-1. Preparing
metaphase spreads
The
nuclear membrane
The nuclear lamina
Box 2-2. Intermediate filaments
Nuclear pores
Box 2-3. Identifying
proteins in large structures by mass spectrometry
Importing
proteins of >60 kD
Box 2-4. Autoradiography
RNA export
Is
the nuclear membrane an ion barrier?
The nucleolus
Packaging chromatin
during interphase
Artifacts
Box 2-5. Isolating nuclei
Box 2-6. Nuclear
matrices and scaffolds
Box
2-7. Nucleoids
The nucleosome
The
zig-zagging nucleosomal string
Chromatin loops
Box 2-8.
Position-effect variegation in Drosophila
Chromatin 'clouds'
Chromosome
territories
Box 2-9. In situ hybridization
Box. Chromosome conformation capture (3C)
Chromatin dynamics
Nucleoskeletons
and nuclear sub-compartments
Box 2-10. Acute
promyelocytic leukemia
Chromosomes
Elements
of yeast chromosomes
Telomeres
Box 2-11. Aging
Chromosome bands
Models
for chromosome organization
Polytene chromosomes
Figure: 2-1, 2-2, 2-3.
Additional reference:
Misteli, T. (2010). Higher-order genome organization in human disease. Cold Spring Harb. Perspect. Biol. 2, a000794. [PubMed]
Web link:
http://www.cellnucleus.com/ Links to tutorials, movies, and references on nuclear structure and dynamics.
Box 2-1. Preparing
metaphase spreads
Reference:
Macgregor, H.C. and Varley, J.B. (1988). 'Working with animal
chromosomes'. 2nd edition. John Wiley, Chichester, UK.
Web link:
http://www.kumc.edu/gec/prof/cytogene.html
Cytogenetic resources
http://gslc.genetics.utah.edu/units/disorders/karyotype/
Make a karyotype.
The
nuclear membrane
Figure: 2-4.
Reference:
Gerace, L. and Foisner, R. (1994). Integral membrane proteins and
dynamic organization of the nuclear envelope. Trends Cell Biol. 4,
127-131.
Nigg, E.A. (1997). Nucleocytoplasmic transport: signals, mechanisms and
regulation. Nature 386, 779-787. [PubMed]
Additional reference:
Hetzer, M.W. (2010). The nuclear envelope. Cold. Spring. Harb. Perspect. Biol. 2, a000539. [PubMed]
Wilson, K.L., and Berk, J.M. (2010). The nuclear envelope at a glance. J. Cell Sci. 123, 1973-1978. [PubMed]
Rothballer, A., and Kutay, U. (2012). SnapShot: The nuclear envelope I and II. Cell 150, 868-868 and 1084-1084. [PubMed]
and [PubMed]
Web link:
http://msg.ucsf.edu/sedat/ Interactions of chromatin with the envelope.
The
nuclear lamina
Reference:
Paddy, M.R., Agard, D.A. and Sedat, J.W. (1992). An extended view of
nuclear lamin structure, function, and dynamics. Seminars in Cell Biol. 3, 255-256.
Additional reference:
Ho, C.Y., and Lammerding, J. (2012). Lamins at a glance. J Cell Sci 125, 2087-2093. [PubMed]
Zuela, N., Bar, D.Z., and Gruenbaum, Y. (2012). Lamins in development, tissue maintenance and stress. EMBO Rep. 13, 1070-1078. [PubMed]
Box
2-2. Intermediate filaments
Reference:
Fuchs, E. and Cleveland, D.W. (1998). A structural scaffolding of
intermediate filaments in health and disease. Science 279,
514-519. [PubMed]
Additional reference:
Coulombe, P.A., Ma, L., Yamada, S. and Wawesik, M. (2001). Intermediate
filaments at a glance. J. Cell Sci. 114, 4345-4347. [Full text]
Herrmann, H., Bar, H., Kreplak, L., Strelkov, S.V., and Aebi, U. (2007). Intermediate filaments: from cell architecture to nanomechanics. Nat. Rev. Mol. Cell. Biol. 8, 562-573. [PubMed]
Web link:
Go
to Intermediate filaments at a glance from J Cell Sci.
Nuclear pores
Figure: 2-5, 2-6.
Reference:
Keminer, O., Siebrasse, J.-P., Zerf, K. and Peters, R.
(1999). Optical recording of signal-mediated protein transport through
single nuclear pore complexes. Proc. Natl. Acad. Sci. USA 96,
11842-11847. [PubMed]
[Full text]
Wente, S.R. (2000). Gatekeepers of the nucleus. Science 288,
1374-1377. [PubMed]
Additional reference:
Bootman, M.D., Fearnley, C., Smyrnias, I., MacDonald, F., and Roderick, H.L. (2009). An update on nuclear calcium signalling. J. Cell Sci. 122, 2337-2350. [PubMed]
Carmody, S.R., and Wente, S.R. (2009). mRNA nuclear export at a glance. J Cell Sci 122, 1933-1937. [PubMed]
Lowe, A.R., Siegel, J.J., Kalab, P., Siu, M., Weis, K., and Liphardt, J.T. (2010). Selectivity mechanism of the nuclear pore complex characterized by single cargo tracking. Nature 467, 600-603. [PubMed]
Grünwald, D., Singer, R.H., and Rout, M. (2011). Nuclear export dynamics of RNA-protein complexes. Nature 475, 333-341. [PubMed]
Strambio-De-Castillia, C., Niepel, M., and Rout, M.P. (2010). The nuclear pore complex: bridging nuclear transport and gene regulation. Nat. Rev. Mol. Cell Biol. 11, 490-501. [PubMed]
Web link:
http://jcs.biologists.org/cgi/content/full/113/22/3885/DC1 Link to views of the pore.
Box
2-3. Identifying proteins in large structures
by mass spectrometry
Reference:
Wigge, P.A., Jensen, O.N., Holmes, S., Soues, S., Mann, M. and
Kilmartin, J.V. (1998). Analysis of the Saccharomyces spindle
pole by matrix-assisted laser desorption/ionization (MALDI) mass
spectrometry. J. Cell Biol. 141, 967-977. [PubMed]
[Full text]
Additional reference:
Leitner, A., and Aebersold, R. (2013). SnapShot: mass spectrometry for protein and proteome analyses. Cell 154, 252-252. [PubMed]
Web link:
http://info.med.yale.edu/wmkeck/#msprochem Descriptions of different techniques.
Importing
proteins of >60 kD
Table: 2-1.
Figure: 2-7.
Reference:
Mattaj, I.W. and Englmeier, L. (1998). Nucleocytoplasmic transport.
Annu Rev. Biochem. 67, 265-306. [PubMed]
Nakielny, S. and Dreyfuss, G. (1999). Transport of proteins and RNAs in
and out of the nucleus. Cell 99, 677-690.
Additional reference:
Joseph, J. (2006). Ran at a glance. J. Cell Sci. 119,
3481-3484. [PubMed]
Lange, A., Mills, R.E., Lange, C.J., Stewart, M., Devine, S.E., and Corbett, A.H. (2007). Classical nuclear localization signals: definition, function, and interaction with importin alpha. J. Biol. Chem. 282, 5101-5105. [PubMed]
Stewart, M. (2007). Molecular mechanism of the nuclear protein import cycle. Nat. Rev. Mol. Cell Biol. 8, 195-208. [PubMed]
Box
2-4. Autoradiography
Reference:
Wilkinson, D.G. (1992). 'In situ hybridization: a practical
approach'. Oxford University Press, Oxford.
RNA export
Reference:
Mattaj, I.W. and Englmeier, L. (1998). Nucleocytoplasmic transport.
Annu Rev. Biochem. 67, 265-306. [PubMed]
Nakielny, S. and Dreyfuss, G. (1999). Transport of proteins and RNAs in
and out of the nucleus. Cell 99, 677-690.
Additional reference:
Darzacq, X., Singer, R.H., and Shav-Tal, Y. (2005). Dynamics of
transcription and mRNA export. Curr. Opin. Cell Biol. 17,
332-339. [PubMed]
Iborra, F.J., Jackson, D.A. and Cook, P.R. (2000). Transport of mRNA
through nuclear pores: apparent entry from the sides into dedicated
pores. J. Cell Sci. 113, 291-302. [PubMed]
[Text]
Carmody, S.R., and Wente, S.R. (2009). mRNA nuclear export at a glance. J. Cell Sci. 122, 1933-1937. [PubMed]
Is the nuclear
membrane an ion barrier?
Reference:
Malviya, A.N. and Rogue, P.J. (1998). 'Tell me where is calcium bred':
clarifying the roles of nuclear calcium. Cell 92, 17-23.
Additional reference:
Bootman, M.D., Fearnley, C., Smyrnias, I., Macdonald, F., and Roderick, H.L. (2009). An update on nuclear calcium signalling. J Cell Sci 122, 2337-2350. [PubMed]
Michelangeli, F., Ogunbayo, O.A., and Wootton, L.L. (2005). A plethora
of interacting organellar Ca2+ stores. Curr. Opin. Cell Biol. 17,
135-140. [PubMed]
Monserrate, J.P., and York, J.D. (2010). Inositol phosphate synthesis and the nuclear processes they affect. Curr. Opin. Cell Biol. 22, 365-373. [PubMed]
The
nucleolus
Figure: 2-8.
Reference:
Shaw, P.J. and Jordan, E.G. (1995). The nucleolus. Annu. Rev. Cell Dev.
Biol. 11, 93-121. [PubMed]
Pederson, T. (1998). The plurifunctional nucleolus. Nucl. Acids Res. 26,
3871-3876. [PubMed]
[Full text]
Additional reference:
Boisvert, F.M., van Koningsbruggen, S., Navascues, J., and Lamond, A.I. (2007). The multifunctional nucleolus. Nat. Rev. Mol. Cell Biol. 8, 574-585. [PubMed]
McKeown, P.C., and Shaw, P.J. (2009). Chromatin: linking structure and function in the nucleolus. Chromosoma 118, 11-23. [PubMed]
Thomson, E., Ferreira-Cerca, S., and Hurt, E. (2013). Eukaryotic ribosome biogenesis at a glance. J Cell Sci 126, 4815-4821.
[PubMed]
Web link:
http://jcs.biologists.org/cgi/content/full/118/7/1335
The nucleolus from 'Cell
Science at a glance'.
Packaging chromatin
during interphase
Figure: 2-9.
Table: 2-2.
Reference:
Cook, P.R. (1995). A chromomeric model for nuclear and chromosome
structure. J. Cell Sci. 108, 2927-2935. [PubMed]
[Full text]
Wolffe, A. (1998). 'Chromatin: structure and function'. 3rd
edition. Academic Press, London.
Additional reference:
Feuerborn, A., and Cook, P.R. (2015). Why the activity of a gene depends on its neighbors. Trends Genet. 91, 483-490. [PubMed]
Gross, D.S., Chowdhary, S., Anandhakumar, J., and Kainth, A.S. (2015). Chromatin. Curr Biol 25, R1158-63. [PubMed]
Misteli, T. (2010). Higher-order genome organization in human disease. Cold Spring Harb. Perspect. Biol. 2, a000794. [PubMed]
Papantonis, A., and Cook, P.R. (2013). Transcription factories; genome organization and gene regulation. Chem. Rev. 113, 8683-8705. [PubMed]
Artifacts
Figure: 2-10, 2-11.
Reference:
Cook, P.R. (1988). The nucleoskeleton: artefact, passive framework or
active site? J. Cell Sci. 90, 1-6.
Van Holde, K. and Zlatanova, J. (1995). Chromatin higher order
structure: chasing a mirage? J. Biol. Chem. 270, 8373-8376. [Full text]
Additional reference:
Pederson, T. (2000). Half a century of 'the nuclear matrix'. Mol. Biol.
Cell 11, 799-805. [PubMed]
[Full
text]
Box
2-5. Isolating nuclei
Reference:
Marzluff, W.F. and Huang, R.C.C. (1984). Transcription of RNA in
isolated nuclei. In 'Transcription and translation: a practical
approach'. Ed B.D. Hames and S.J. Higgins. IRL Press, Oxford.
Box 2-6. Nuclear
matrices and scaffolds
Reference:
Roberge, M. and Gasser, S.M. (1992). DNA loops: structural and
functional properties of scaffold-attached regions. Molec. Micro. 6,
419-423. [PubMed]
Additional reference:
Razin, S.V., Iarovaia, O.V., and Vassetzky, Y.S. (2014). A requiem to the nuclear matrix: from a controversial concept to 3D organization of the nucleus. Chromosoma 123, 217-224. [PubMed]
Box
2-7. Nucleoids
Reference:
Jackson, D.A., McCready, S.J. and Cook, P.R. (1984). Replication and
transcription depend on attachment of DNA to the nuclear cage. J. Cell
Sci. Suppl. 1, 59-79. [PubMed]
The
nucleosome
Figure: 2-12, 2-13,
2-14, 2-15.
Reference:
Luger, K., Mäder, A.W., Richmond, R.K., Sargent, D.F. and
Richmond, T.J. (1997). Crystal structure of the nucleosome core
particle at 2.8 Å resolution. Nature 389, 251-260. [PubMed]
Kornberg, R.D. and Lorch, Y. (1999). Twenty-five years of the
nucleosome, fundamental particle of the eukaryote chromosome. Cell 98,
285-294.
Additional reference:
Deal, R.B., Henikoff, J.G., and Henikoff, S. (2010). Genome-wide kinetics of nucleosome turnover determined by metabolic labeling of histones. Science 328, 1161-1164. [PubMed]
Zlatanova, J., Bishop, T.C., Victor, J.M., Jackson, V., and van Holde, K. (2009). The nucleosome family: dynamic and growing. Structure 17, 160-171. [PubMed]
Web link:
http://sgi.bls.umkc.edu/waterborg/chromat/chromatn.html
J Waterborg's page, with a good slide show.
The zig-zagging
nucleosomal string
Figure: 2-16.
Reference:
Woodcock, C.L and Horowitz, R.A. (1995). Chromatin organization
re-viewed. Trends Cell Biol. 5, 272-277.
Additional reference:
Hansen, J.C. (2012). Human mitotic chromosome structure: what happened to the 30-nm fibre? EMBO J. 31, 1621-1623. [PubMed]
Nishino, Y., Eltsov, M., Joti, Y., Ito, K., Takata, H., Takahashi, Y., Hihara, S., Frangakis, A.S., Imamoto, N., Ishikawa, T., and Maeshima, K. (2012). Human mitotic chromosomes consist predominantly of irregularly folded nucleosome fibres without a 30-nm chromatin structure. EMBO J. 31, 1644-1653. [PubMed]
Schlick, T., Hayes, J., and Grigoryev, S. (2012). Toward convergence of experimental studies and theoretical modeling of the chromatin fiber. J. Biol. Chem. 287, 5183-5191. [PubMed]
Chromatin
loops
Figure: 2-17, 2-18, 2-19, 2-20.
Reference:
Macgregor, H.C. and Varley, J.B. (1988). 'Working with animal
chromosomes'. 2nd edition. John Wiley, Chichester, UK.
Jackson, D.A., Dickinson, P. and Cook, P.R. (1990). The size of
chromatin loops in HeLa cells. EMBO J. 9, 567-571. [PubMed]
Jackson, D.A., Bartlett, J. and Cook, P.R. (1996). Sequences attaching
loops of nuclear and mitochondrial DNA to underlying structures in
human cells: the role of transcription units. Nucl. Acids Res. 24,
1212-1219. [PubMed]
[Full
text]
Jackson, D.A. and Cook, P.R. (1993). Transcriptionally-active
minichromosomes are attached transiently in nuclei through
transcription units. J. Cell Sci. 105, 1143-1150. [PubMed]
Schedl, P. and Grosveld, F. (1996). Domains and boundaries. In
'Chromatin structure and gene expression' (Ed. Elgin, S.C.R.). IRL
Press at Oxford University Press, Oxford.
Additional reference:
Feuerborn, A., and Cook, P.R. (2015). Why the activity of a gene depends on its neighbors. Trends Genet. 91, 483-490. [PubMed]
Papantonis, A., and Cook, P.R. (2013). Transcription factories; genome organization and gene regulation. Chem. Rev. 113, 8683-8705. [PubMed]
Morgan, G.T. (2002). Lampbrush chromosomes and associated bodies: new
insights into principles of nuclear structure and function. Chromosome
Research 10, 177-200. [PubMed]
Ohlsson, R., and Gondor, A. (2007). The 4C technique: the ‘Rosetta stone’ for genome biology in 3D? Curr. Opin. Cell Biol. 19,
317-320. [PubMed]
Box 2-8.
Position-effect variegation in Drosophila
Reference:
Pirotta, V. and Rastelli, L. (1994). white gene expression,
repressive chromatin domains and homeotic gene regulation in Drosophila.
BioEssays 16, 549-556. [PubMed]
Wakimoto, B.T. (1998). Beyond the nucleosome: epigenetic aspects of
position-effect variegation in Drosophila. Cell 93, 321-324.
Additional reference:
Ebert, A., Lein, S., Schotta, G., and Reuter, G. (2006). Histone modification and the control of heterochromatic gene silencing in Drosophila. Chromosome Res. 14, 377-392. [PubMed]
Feng, Y.-Q., Lorincz, M.C., Fiering, S., Greally, J.M. and Bouhassira,
E.E. (2001). Position effects are influenced by the orientation of a
transgene with respect to flanking chromatin. Mol. Cell. Biol. 21,
298-309. [PubMed]
[Full
text]
Schotta, G., Ebert, A., Dorn, R., and Reuter, G. (2003).
Position-effect variegation and the genetic dissection of chromatin
regulation in Drosophila. Semin. Cell Dev. Biol. 14, 67-75. [PubMed]
Zhimulev, I.F., Belyaeva, E.S., Semeshin, V.F., Koryakov, D.E.,
Demakov, S.A., Demakova, O.V., Pokholkova, G.V., and Andreyeva, E.N.
(2004). Polytene chromosomes: 70 years of genetic research. Int. Rev.
Cytol. 241, 203-275. [PubMed]
Web link:
http://flybase.org Images of Drosophila (go to 'ImageBrowse').
Chromatin
'clouds'
Figure: 2-21.
Reference:
Iborra, F.J., Pombo, A., Jackson, D.A. and Cook, P.R. (1996). Active
RNA polymerases are localized within discrete transcription 'factories'
in human nuclei. J. Cell Sci. 109, 1427-1436. [PubMed]
[Full text]
Chromosome
territories
Figure: 2-22.
Reference:
Hiraoka, Y., Agard, D.A. and Sedat, J.W. (1990). Temporal and spatial
coordination of chromosome movement, spindle formation, and nuclear
envelope breakdown during prometaphase in Drosophila melanogaster
embryos. J. Cell Biol. 111, 2815-2828. [PubMed]
Cremer, T., Kurz, A., Zirbel, R., Dietzel, S., Rinke, B., Schrock, E.,
Speicher, M.R., Mathieu, U., Jauch, A., Emmerich, P., Scherthan, H.,
Reid, T., Cremer, C. and Lichter, P. (1993). Role of chromosome
territories in the functional compartmentalization of the cell nucleus.
Cold Spring Harb. Symp. Quant. Biol. 58, 777-792.
Additional reference:
Branco, M.R., and Pombo, A. (2006). Intermingling of chromosome
territories in interphase suggests role in translocations and
transcription-dependent associations. PLoS Biol. 4, e138. [PubMed]
Cremer, T., and Cremer, M. (2010). Chromosome territories. Cold Spring Harb. Perspect. 2, a003889. [PubMed]
Misteli, T. (2010). Higher-order genome organization in human disease. Cold Spring Harb. Perspect. Biol. 2, a000794. [PubMed]
Roix, J.J., McQueen, P.G., Munson, P.J., Parada, L.A. and Misteli, T.
(2003). Spatial proximity of translocation-prone gene loci in
human lymphomas. Nat. Genet. 34, 287-291. [PubMed]
Chromatin dynamics
Additional reference:
Lanctot, C., Cheutin, T., Cremer, M., Cavalli, G., and Cremer, T. (2007). Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat. Rev. Genet. 8, 104-115. [PubMed]
Box
2-9. In situ hybridization
Reference:
Wilkinson, D.G. (1992). 'In situ hybridization: a practical
approach'. Oxford University Press, Oxford.
Additional reference:
Levsky, J.M. and Singer, R.H. (2003). Fluorescence in situ
hybridization: past, present and future. J. Cell Sci. 116,
2833-2838. [PubMed]
Speicher, M.R., and Carter, N.P. (2005). The new cytogenetics: blurring
the boundaries with molecular biology. Nat. Rev. Genet. 6,
782-792. [PubMed]
Web link:
http://www.protocol-online.net/cellbio/cytogenetics/cytogenetics.htm
Various protocols.
Box. Chromosome conformation capture (3C)
Dekker, J., Rippe, K., Dekker, M., and Kleckner, N. (2002). Capturing chromosome conformation. Science 295, 1306-1311. [PubMed]
Hakim O., and Misteli, T. (2012). SnapShot: chromosome confirmation capture. Cell 148, 1068-1068. [PubMed]
Nucleoskeletons
and nuclear sub-compartments
Figure: 2-23.
Reference:
Jackson, D.A. and Cook, P.R. (1988). Visualization of a filamentous
nucleoskeleton with a 23 nm axial repeat. EMBO J. 7, 3667-3677.
[PubMed]
Hozák, P., Sasseville, A. M-J., Raymond, R. and
Cook. P.R. (1995). Lamin proteins form an internal nucleoskeleton
as well as a peripheral lamina in human cells. J. Cell Sci. 108,
635-644. [PubMed]
[Full text]
Lamond, A.I. and Earnshaw, W.C. (1998). Structure and function in the
nucleus. Science 280, 547-553. [PubMed]
Additional reference:
Carmo-Fonseca, M., Berciano, M.T., and Lafarga, M. (2010). Orphan nuclear bodies. Cold Spring Harb. Perspect. Biol. 2, a000703. [PubMed]
Dahl, K.N., and Kalinowski, A. (2011). Nucleoskeleton mechanics at a glance. J. Cell Sci. 124, 675-678. [PubMed]
Herrmann, H., Bar, H., Kreplak, L., Strelkov, S.V., and Aebi, U. (2007). Intermediate filaments: from cell architecture to nanomechanics. Nat. Rev. Mol. Cell Biol. 8, 562-573. [PubMed]
de Lanerolle, P. (2012). Nuclear actin and myosins at a glance. J. Cell Sci 125, 4945-4949. [PubMed]
Simon, D.N., and Wilson, K.L. (2011). The nucleoskeleton as a genome-associated dynamic 'network of networks'. Nat. Rev. Mol. Cell Biol. 12, 695-708. [PubMed]
Web link:
http://npd.hgu.mrc.ac.uk See protein content of different compartments in the Nuclear
Protein Database.
Box 2-10. Acute
promyelocytic leukemia
Reference:
Andre, C., Guillemin, M-C., Zhu, J., Koken, M.H.M., Quignon, F., Herve,
L., Chelbi-Alix, M.K., Dhumeaux, D., Wang, Z.-Y., Degos, L., Chen, Z.
and de The, H. (1996). The PML and PML/RARa
domains: from autoimmunity to molecular oncology and from retinoic acid
to arsenic. Exp. Cell Res. 229, 253-260. [PubMed]
[Full
text]
Additional reference:
Lallemand-Breitenbach, V., and de Thé, H. (2010). PML nuclear bodies. Cold Spring Harb. Perspect. Biol 2, a000661. [PubMed]
Zhang, X.W. et al. (2010). Arsenic trioxide controls the fate of the PML-RARalpha oncoprotein by directly binding PML. Science 328, 240-243. [PubMed]
Web link:
http://cancernet.nci.nih.gov/cancertopics Go to the leukemia page.
Chromosomes
Figure: 2-24.
Reference:
Wagner, R.P., Maguire, M.P. and Stallings, R.L. (1993). 'Chromosomes: a
synthesis'. Wiley-Liss, New York, USA.
Additional reference:
Marshall, O.J.., Chueh, A.C., Wong, L.H., and Choo, K.H. (2008). Neocentromeres: new insights into centromere structure, disease development, and karyotype evolution. Am. J. Hum. Genet. 82, 261-282. [PubMed]
Schueler, M.G., Higgins, A.W., Rudd, M.K., Gustashaw, K. and Willard, H.F. (2001). Genomic and genetic definition of a functional human centromere. Science 294, 109-115. [PubMed]
Web link:
http://www.chromosome.net Web site for chromosome researchers.
http://www.kumc.edu/gec/prof/cytogene.html Cytogenetic resources.
Elements
of yeast chromosomes
Reference:
Murray, A.W. and Szostak, J.W. (1983). Construction of artificial
chromosomes of yeast. Nature 305, 189-193. [PubMed]
Carbon, J. (1984). Yeast centromeres; structure and function. Cell 37,
351-353.
Additional reference:
Dawe, R.K., and Henikoff, S. (2006). Centromeres put epigenetics in the driver's seat. Trends Biochem. Sci 31, 662-669. [PubMed]
Ekwall, K. (2004). The roles of histone modifications and small
RNA in centromere function. Chromosome Res. 12, 535-542. [PubMed]
Pidoux, A.L. and Allshire, R.C. (2004). Kinetochore and
heterochromatin domains of the fission yeast centromere.
Chromosome Res. 12,
521-34. [PubMed]
Telomeres
Reference:
Griffith, J.D., Comeau, L., Rosenfeld, S., Stansel, R.M., Bianchi, A.,
Moss, H. and de Lange, T. (1999). Mammalian telomeres end in a large
duplex loop. Cell 97, 503-514. [PubMed]
Additional reference:
Blackburn, E.H., Greider, C.W., and Szostak, J.W. (2006). Telomeres and telomerase: the path from maize, Tetrahymena and yeast to human cancer and aging. Nat. Med. 12, 1133-1138. [PubMed]
Sfeir, A. (2012). Telomeres at a glance. J Cell Sci 125, 4173-4178. [PubMed]
Shay, J.W., Reddel, R.R., and Wright, W.E. (2012). Cancer and telomeres--an ALTernative to telomerase. Science 336, 1388-1390. [PubMed].
Box 2-11. Aging
Additional reference:
Kaeberlein, M. (2010). Lessons on longevity from budding yeast. Nature 464, 513-519. [PubMed]
Kenyon, C.J. (2010). The genetics of ageing. Nature 464, 504-512. [PubMed]
Sahin, E., and Depinho, R.A. (2010). Linking functional decline of telomeres, mitochondria and stem cells during ageing. Nature 464, 520-528. [PubMed]
Chromosome
bands
Reference:
Craig, J.M. and Bickmore, W.A. (1993). Chromosome bands - flavours to
savour. BioEssays 15, 349-354. [PubMed]
Web link:
http://www.kumc.edu/gec/prof/cytogene.html Cytogenetic resources.
Models for chromosome
organization
Figure: 2-25, 2-26, 2-27.
Reference:
Manuelidis, L. (1990). A view of interphase chromosomes. Science 250,
1533-1540. [PubMed]
Saitoh, Y. and Laemmli, U.K. (1994). Metaphase chromosome structure:
bands arise from a differential folding path of the highly AT-rich
scaffold. Cell 76, 609-622. [PubMed]
Cook, P.R. (1995). A chromomeric model for nuclear and chromosome
structure. J. Cell Sci. 108, 2927-2935. [PubMed]
[Full text]
Additional reference:
Casolari, J.M., Brown, C.R., Komili, S., West, J., Hieronymus, H. and
Silver, P.A. (2004). Genome-wide localization of the nuclear
transport machinery couples transcriptional status and nuclear
organization. Cell 117, 427-439. [PubMed]
Cook, P.R. (2010). A model for all genomes; the role of transcription factories. J. Mol. Biol. 395, 1–10. [PubMed]
Cornforth, M.N., Greulich-Bode, K.M., Loucas, B.D., Arsuaga, J.,
Vazquez, M., Sachs, R.K., Bruckner, M., Molls, M., Hahnfeldt, P.,
Hlatky, L. and Brenner, D.J. (2002). Chromosomes are predominantly
located randomly with respect to each other in interphase human
cells. J. Cell Biol. 159, 237-244. [PubMed]
Kireeva, N., Lakonishok, M., Kireev, I., Hirano, T. and Belmont, A.S.
(2004). Visualization of early chromosome condensation: a
hierarchical folding, axial glue model of chromosome structure.
J. Cell Biol. 166,
775-785. [PubMed]
Misteli, T. (2007). Beyond the sequence: cellular organization of genome function. Cell 128, 787-800. [PubMed]
Ono, T., Losada, A., Hirano, M., Myers, M.P., Neuwald, A.F. and Hirano,
T. (2003). Differential contributions of condensin I and
condensin II to mitotic chromosome architecture in vertebrate
cells. Cell 115, 109-121. [PubMed]
Schneider, R., and Grosschedl, R. (2007). Dynamics and interplay of nuclear architecture, genome organization, and gene expression. Genes Dev. 21, 3027-3043. [PubMed]
Swedlow, J.R. and Hirano, T. (2003). The making of the mitotic
chromosome: modern insights into classical questions. Mol. Cell. 11,
557-569. [PubMed]
Polytene
chromosomes
Figure: 2-28.
Reference:
Wagner, R.P., Maguire, M.P. and Stallings, R.L. (1993). 'Chromosomes: a
synthesis'. Wiley-Liss, New York, USA.
Additional reference:
Zhimulev, I.F., Belyaeva, E.S., Semeshin, V.F., Koryakov, D.E.,
Demakov, S.A., Demakova, O.V., Pokholkova, G.V., and Andreyeva, E.N.
(2004). Polytene chromosomes: 70 years of genetic research. Int. Rev.
Cytol. 241, 203-275. [PubMed]
Web link:
http://flybase.org/maps/chromosomes/maps.html Links to images/maps of polytene chromosomes.
http://msg.ucsf.edu/sedat//dros_polytene_chrom.html Images of polytene chromosomes fromJohn Sedat.