Updated on 10 March, 2016
Principles
The translation machinery
tRNAs as adaptors
Box. tRNA maturation
Aminoacyl-tRNA synthetase couples an amino acid to the appropriate tRNA
The ribosome - the translation machine
The ribosome is a ribozyme
Decoding the message in the ribosome
Polyribosomes are responsible for protein synthesis
Box. Initiation in bacteria
Initiation in eukaryotes
Box. Internal ribosome entry sites
Elongation
Elongation factors
Box. Inhibitors of protein synthesis
Box. Translation factors and disease
Fidelity and quality control
The economics of protein production and degradation
Protein folding and misfolding
Molecular chaperones facilitate folding
Proteasomes and the disposal of misfolded proteins
Box. Prions, aggresomes
Nuclear translation
Principles
Reference:
Kapp, L.D., and Lorsch, J.R. (2004). The molecular mechanics of eukaryotic translation. Annu. Rev. Biochem. 73, 657-704. [PubMed]
Merrick, W.C. (2010). Eukaryotic protein synthesis: still a mystery. J. Biol. Chem. 285, 21197-21201. [PubMed]
Moore, P.B., and Steitz, T.A. (2011). The roles of RNA in the synthesis of protein. Cold Spring Harb. Perspect. Biol. 3, a003780. [PubMed]
Web link:
http://learn.genetics.utah.edu/content/begin/dna/ Primer from the University of Utah.
The translation machinery
tRNAs as adaptors
Reference:
Rich, A. (2009). The era of RNA awakening: structural biology of RNA in the early years. Q. Rev. Biophys. 42, 117-137. [PubMed]
Box. tRNA
maturation
Reference:
Helm, M. (2006). Post-transcriptional nucleotide modification and
alternative folding of RNA. Nucleic Acids Res. 34, 721-33. [PubMed]
Hopper, A.K., Pai, D.A., and Engelke, D.R. (2010). Cellular dynamics of tRNAs and their genes. FEBS Lett. 584, 310-317. [PubMed]
Aminoacyl-tRNA
synthetase couples an amino acid to the appropriate tRNA
Reference:
Chin, J.W. (2012). Reprogramming the genetic code. Science 336, 428-429. [PubMed]
Ling, J., Reynolds, N., and Ibba, M. (2009). Aminoacyl-tRNA synthesis and translational quality control. Annu. Rev. Microbiol. 63, 61-78. [PubMed]
The
ribosome - the translation machine
Reference:
Dinman, J.D. (2009). The eukaryotic ribosome: current status and challenges. J. Biol. Chem 284, 11761-11765. [PubMed]
Moore, P.B., and Steitz, T.A. (2011). The roles of RNA in the synthesis of protein. Cold Spring Harb. Perspect. Biol. 3, a003780. [PubMed]
Simonović, M., and Steitz, T.A. (2009). A structural view on the mechanism of the ribosome-catalyzed peptide bond formation. Biochim. Biophys. Acta 1789, 612-623. [PubMed]
Thomson, E., Ferreira-Cerca, S., and Hurt, E. (2013). Eukaryotic ribosome biogenesis at a glance. J Cell Sci 126, 4815-4821.
[PubMed]
The
ribosome is a ribozyme
Reference:
Moore, P.B. (2009). The ribosome returned. J. Biol. 8, 8. [PubMed]
Web link:
http://www.imb-jena.de/RNA.html RNA World site.
Reference:
Noller, H.F. (2005). RNA structure: reading the ribosome. Science 309, 1508-1514. [PubMed]
Polyribosomes
are responsible for protein synthesis
Reference:
Brandt, F., Carlson, L.A., Hartl, F.U., Baumeister, W., and Grünewald, K. (2010). The three-dimensional organization of polyribosomes in intact human cells. Mol. Cell 39, 560-569. [PubMed]
Warner, J.R. and Knopf, P.M. (2002). The discovery of polyribosomes. Trends Biochem Sci. 27, 376-380. [PubMed]
Reference:
Laursen, B.S., Sorensen, H.P., Mortensen, K.K., and Sperling-Petersen, H.U. (2005). Initiation of protein synthesis in bacteria. Microbiol. Mol. Biol. Rev. 69, 101-123. [PubMed]
Initiation
in eukaryotes
Reference:
Hinnebusch, A.G., and Lorsch, J.R. (2012). The mechanism of eukaryotic translation initiation: new insights and challenges. Cold Spring Harb. Perspect. Biol. 4, doi:pii: a011544. 10.1101/cshperspect.a011544.
Jackson, R.J., Hellen, C.U., and Pestova, T.V. (2010). The mechanism of eukaryotic translation initiation and principles of its regulation. Nat. Rev. Mol. Cell Biol. 11, 113-127. [PubMed]
Maquat, L.E., Tarn, W.Y., and Isken, O. (2010). The pioneer round of translation: features and functions. Cell 142, 368-374. [PubMed]
Merrick, W.C. (2010). Eukaryotic protein synthesis: still a mystery. J. Biol. Chem. 285, 21197-21201. [PubMed]
Box.
Internal ribosome entry sites
Reference:
Filbin, M.E., and Kieft, J.S. (2009). Toward a structural understanding of IRES RNA function. Curr. Opin. Struct. Biol. 19, 267-276. [PubMed]
Elongation
Reference:
Groppo, R., and Richter, J.D. (2009). Translational control from head to tail. Curr. Opin. Cell Biol. 21, 444-451. [PubMed]
Elongation
factors
Reference:
Nilsson, J., and Nissen, P. (2005). Elongation factors on the ribosome.
Curr. Opin. Struct. Biol. 15, 349-354. [PubMed]
Box.
Inhibitors of protein synthesis
Reference:
Tenson, T., and Mankin, A. (2006). Antibiotics and the ribosome. Mol.
Microbiol. 59, 1664-1677. [PubMed]
Web link:
Sohmen, D., Harms, J.M., Schlünzen, F., and Wilson, D.N. (2009). SnapShot: Antibiotic inhibition of protein synthesis I. Cell 138, 1248. [PubMed]
Sohmen, D., Harms, J,M., Schlünzen, F., and Wilson, D.N. (2009). Enhanced SnapShot: Antibiotic inhibition of protein synthesis II. Cell 139, 212-212. [PubMed]
Box.
Translation factors and disease
Reference:
Scheper, G.C., van der Knaap, M.S., and Proud, C.G. (2007). Translation matters: protein synthesis defects in inherited disease. Nat. Rev. Genet. 8, 711-723. [PubMed]
Fidelity and quality control
Reference:
Francklyn, C.S. (2008). DNA polymerases and aminoacyl-tRNA synthetases: shared mechanisms for ensuring the fidelity of gene expression. Biochemistry 47, 11695-11703. [PubMed]
Hershey, J.W., Sonenberg, N., and Mathews, M.B. (2012). Principles of translational control: an overview. Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a011528.
Kurosaki, T., and Maquat, L.E. (2016). Nonsense-mediated mRNA decay in humans at a glance. J. Cell Sci. 129, 461-467. [PubMed]
Pechmann, S., Willmund, F., and Frydman, J. (2013). The ribosome as a hub for protein quality control. Mol. Cell 49, 411-421. [PubMed]
The economics
of protein production and degradation
Reference:
Yewdell, J.W. (2001). Not such a dismal science: the economics of
proteins synthesis, folding, degradation and antigen processing. Trends
Cell Biol. 11, 294-297. [PubMed]
Schubert, U., Antón, L.C., Gibbs, J., Norbury, C.C., Yewdell,
J.W. and Bennink, J.R. (2001). Rapid degradation of a large fraction of
newly synthesized proteins by proteasomes. Nature 404,
770-774. [PubMed]
Reference:
Fersht, A.R. (2008). From the first protein structures to our current knowledge of protein folding: delights and scepticisms. Nat. Rev. Mol. Cell Biol. 9, 650-654. [PubMed]
Hartl, F.U., and Hayer-Hartl, M. (2009). Converging concepts of protein folding in vitro and in vivo. Nat. Struct. Mol. Biol. 16, 574-581. [PubMed]
Winklhofer, K.F., Tatzelt, J., and Haass, C. (2008). The two faces of protein misfolding: gain- and loss-of-function in neurodegenerative diseases. EMBO J. 27, 336-349. [PubMed]
Molecular chaperones
facilitate folding
Reference:
Hartl, F.U., and Hayer-Hartl, M. (2009). Converging concepts of protein folding in vitro and in vivo. Nat. Struct. Mol. Biol. 16, 574-581. [PubMed]
Liberek, K., Lewandowska, A., and Zietkiewicz, S. (2008). Chaperones in control of protein disaggregation. EMBO J. 27, 328-335. [PubMed]
Reference:
Navon, A., and Ciechanover, A. (2009). The 26S proteasome - from basic mechanisms to drug targeting. J. Biol. Chem. [PubMed]
Box.
Prions, aggresomes
Reference:
Cobb, N.J., and Surewicz, W.K. (2009). Prion diseases and their biochemical mechanisms. Biochemistry 48, 2574-2585. [PubMed]
Halfmann, R., Jarosz, D.F., Jones, S.K., Chang, A., Lancaster, A.K., and Lindquist, S. (2012). Prions are a common mechanism for phenotypic inheritance in wild yeasts. Nature 482, 363-368. [PubMed]
Soto, C. (2012). Transmissible proteins: expanding the prion heresy. Cell 149, 968-977. [PubMed]
Tuite, M.F., and Cox, B.S. (2009). Prions remodel gene expression in yeast. Nat. Cell Biol. 11, 241-243. [PubMed]
Web link:
http://learn.genetics.utah.edu/content/begin/dna/prions/ Primer from the University of Utah.
Nuclear
translation
See 'Nuclear translation' in Chapter 4:
Transcription.