Transcription factories in a Hela cell [from Cook PR (1999) Science 284, 1790]

Nuclear Structure and Function Research Group

Peter R Cook's reading lists, etc

based on his book 'Principles of Nuclear Structure and Function'

Book / Reading lists / Chapter 7: The cell cycle
Resources for CHAPTER 7: THE CELL CYCLE
Updated on 1 April, 2015

Overview
        Box 7-1. Synchronizing mammalian cells
Mitosis
        Box 7-2. Microtubules
    The centrosome cycle
    Spindles, centromeres, and kinetochores
        Box 7-3. Different kinds of centromeres
    Microtubule-based motors drive movement
    Separating chromatids
    Cytokinesis
    Polyploidy
Regulation of the cell cycle
        Box 7-4. Glycogen phosphorylase and protein kinases
    Role of trans-acting factors
    Frog embryos: MPF and cyclins
    Yeasts: cdc mutants, START, and ORC
        Box 7-5. The life cycles of two yeasts
    The G2 checkpoint in fission yeast
    The anaphase-promoting complex
    Some other checkpoints
    Growth factors
    Size control
Deranged cycles and cancer
        Box 7-6. The genetic basis of cancer
        Box 7-7. Oncogenes
        Box 7-8. Tumor-suppressor genes
    Genes controlling proliferation
        Box. Tyrosine kinases as targets in cancer
    T antigen, p53, and Rb
        Box 7-9. p53 and human tumors
        Box 7-10. Hereditary colorectal cancer
    microRNAs in cancer
    Cancer therapy and checkpoints
Apoptosis
    The genetic basis of apoptosis
        Box 7-11. Lineage analysis in Caenorhabditis elegans
        Box 7-12. Caspases
    Activating the suicide machinery
        Box 7-13. Death receptors

Overview
Figure: 7-1, 7-2.
Additional reference:
Bloom, K., and Joglekar, A. (2010). Towards building a chromosome segregation machine. Nature 463, 446-456. [PubMed]
Ferrell, J.E.,Tsai, T.Y., Yang, Q. (2011). Modeling the cell cycle: why do certain circuits oscillate? Cell 144, 874-885. [PubMed]
Murray, A.W. and Marks, D. (2001). Can sequencing shed light on cell cycling? Nature 409, 844-846. [PubMed] [Full text]
Walczak, C.E., Cai, S., and Khodjakov, A. (2010). Mechanisms of chromosome behaviour during mitosis. Nat. Rev. Mol. Cell Biol. 11, 91-102. [PubMed]
Web link:
http://www.biology.arizona.edu/cell_bio/cell_bio.html Cell biology tutorial from the University of Arizona.

Box 7-1. Synchronizing mammalian cells
Reference:
Johnson, R.T., Downes, C.S. and Meyn, R.E. (1993). The synchronization of mammalian cells. In 'The cell cycle: a practical approach'. Ed. P. Fantes and R. Brooks. IRL Press, Oxford.
Additional reference:
Krek, W. and DeCaprio, J.A. (1995). Cell synchronization. Meth. Enzymol. 255, 114-124.
Lampson, M.A., and Kapoor, T.M. (2006). Unraveling cell division mechanisms with small-molecule inhibitors. Nat. Chem. Biol. 2, 19-27. [PubMed]

Mitosis
Figure: 7-3, 7-4, 7-5.
Reference:
McIntosh, J.R. and Koonce, M.P. (1989). Mitosis. Science 246, 622-628. [PubMed]
Earnshaw, W.C. and Pluta, A.F. (1994). Mitosis. BioEssays 16, 639-643. [PubMed]
Heald, R., Tournebize, R., Blank, T., Sandaltzoupoulos, R., Becker, P., Hyman, A. and Karsenti, E. (1996). Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature 382, 420-425. [PubMed]
Zhang, D. and Nicklas, R.B. (1996). 'Anaphase' and cytokinesis in the absence of chromosomes. Nature 382, 466-468. [PubMed]
Additional reference:
Bloom, K., and Joglekar, A. (2010). Towards building a chromosome segregation machine. Nature 463, 446-456. [PubMed]
Güttinger, S., Laurell, E., and Kutay, U. (2009). Orchestrating nuclear envelope disassembly and reassembly during mitosis. Nat. Rev. Mol. Cell Biol. 10, 178-191. [PubMed]
Mitchison, T.J. and Salmon, E.D. (2001). Mitosis: a history of division. Nature Cell Biol. 3, E17-E21. [PubMed]
Pines, J. (2006). Mitosis: a matter of getting rid of the right protein at the right time. Trends Cell Biol. 16, 55-63. [PubMed]
Walczak, C.E., Cai, S., and Khodjakov, A. (2010). Mechanisms of chromosome behaviour during mitosis. Nat. Rev. Mol. Cell Biol. 11, 91-102. [PubMed]
Web link:
http://www.unc.edu/depts/salmlab/mitosis/mitosis.html Mitosis links and movies.
http://www.ucsf.edu/sedat/research.html Movie of mitotic chromosomes.
http://www.bio.davidson.edu/courses/movies.html Movies of mitosis.

Box 7-2. Microtubules
Reference:
Mitchison, T.J. (1988). Microtubule dynamics and kinetochore function in mitosis. Annu Rev. Cell Biol. 4, 527-549.
Additional reference:
Brouhard, G.J. (2015). Dynamic instability 30 years later: complexities in microtubule growth and catastrophe. Mol. Biol. Cell 26, 1207-1210.
Fletcher, D.A., and Mullins, R.D. (2010). Cell mechanics and the cytoskeleton. Nature 463, 485-492. [PubMed]
Gascoigne, K.E., and Taylor, S.S. (2009). How do anti-mitotic drugs kill cancer cells? J. Cell Sci. 122, 2579-2585. [PubMed]
Walczak, C.E., Cai, S., and Khodjakov, A. (2010). Mechanisms of chromosome behaviour during mitosis. Nat. Rev. Mol. Cell Biol. 11, 91-102. [PubMed]
Web link:
http://jcs.biologists.org/cgi/content/full/115/1/3 Microtubule dynamics from 'Cell science at a glance'.
http://www.bio.davidson.edu/courses/movies.html Go to the microtubule movies.

The centrosome cycle
Figure: 7-6, 7-7.
Reference:
Wigge, P.A., Jensen, O.N., Holmes, S., Soues, S., Mann, M. and Kilmartin, J.V. (1998). Analysis of the Saccharomyces spindle pole by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. J. Cell Biol. 141, 967-977. [PubMed] [Full text]
Karsenti, E. (1999). Centrioles reveal their secrets. Nature Cell Biol 1, E62-E64.
Additional reference:
Bornens, M. (2012). The centrosome in cells and organisms. Science 335, 422-426. [PubMed]
Bettencourt-Dias, M., and Glover, D.M. (2009). SnapShot: centriole biogenesis. Cell 136, 188-188. [PubMed]
Nigg, E.A., and Stearns, T. (2011). The centrosome cycle: centriole biogenesis, duplication and inherent asymmetries. Nat. Cell Biol. 13, 1154-1160. [PubMed]

Spindles, centromeres, and kinetochores
Figure: 7-8.
Reference:
Pluta, A.F., Mackay, A.M., Ainsztein, A.M., Goldberg, I.G. and Earnshaw, W.C. (1995). The centromere: hub of chromosomal activities. Science 270, 1591-1594. [PubMed]
Hyman, A.A. and Sorger, P.K. (1995). Structure and function of kinetochores in budding yeast. Annu Rev. Biochem. 11, 471-495. [PubMed]
Nicklas, R.B. (1997). How cells get the right chromosomes. Science 275, 632-637. [PubMed]
Nasmyth, K., Peters, J.-M. and Uhlmann, F. (2000). Splitting the chromosome: cutting the ties that bind sister chromatids. Science 288, 1379-1384. [PubMed]
Additional reference:
Bornens, M. (2008). Organelle positioning and cell polarity. Nat. Rev. Mol. Cell Biol. 9, 874-886. [PubMed]
Furuyama, T., and Henikoff S. (2009). Centromeric nucleosomes induce positive DNA supercoils. Cell 138, 104-113. [PubMed]. See also: Lavelle, C., Recouvreux, P., Wong, H., Bancaud, A., Viovy, J.L., Prunell, A., and Victor, J.M. (2009). Right-handed nucleosome: myth or reality? Cell 139, 1216-1217. [PubMed]
Glotzer, M. (2009). The 3Ms of central spindle assembly: microtubules, motors and MAPs. Nat. Rev. Mol. Cell Biol. 10, 9-20. [PubMed]
Lavelle, C., Recouvreux, P., Wong, H., Bancaud, A., Viovy,J.-L., Prunell, A., and Victor, J.-M. (2009). Right-handed nucleosome: myth or reality? Cell 139, 1216-1217. [PubMed]
Li., R, and Gundersen, G.G. (2008). Beyond polymer polarity: how the cytoskeleton builds a polarized cell. Nat. Rev. Mol. Cell Biol. 9, 860-873. [PubMed]
Moseley, J.B., and Nurse, P. (2010). Cell division intersects with cell geometry. Cell 142, 184-188. [PubMed]
Nigg, E.A., and Raff, J.W. (2009). Centrioles, centrosomes, and cilia in health and disease. Cell 139, 663-678. [PubMed]
Przewloka, M.R., and Glover, D.M. (2009). The kinetochore and the centromere: a working long distance relationship. Annu. Rev. Genet. 43, 439-465. [PubMed]
Santaguida, S., and Musacchio, A. (2009). The life and miracles of kinetochores. EMBO J. 28, 2511-2531. [PubMed]
Sharp, D.J., Brown, H.M., Kwon, M., Rogers, G.C., Holland, G., and Scholey, J.M. (2000). Functional coordination of three mitotic motors in Drosophila embryos. Mol. Biol. Cell 11, 241-253. [PubMed]
Winey, M., and Bloom, K. (2012). Mitotic spindle form and function. Genetics 190, 1197-1224. [PubMed]
Wühr, M., Dumont, S., Groen, A.C., Needleman, D.J., and Mitchison, T.J. (2009). How does a millimeter-sized cell find its center? Cell Cycle 8, 1115-1121. [PubMed]
Web link:
http://www.unc.edu/depts/salmlab/mitosis/mitosis.html Mitosis links and movies.

Box 7-3. Different kinds of centromeres
Reference:
Hegemann, J.H. and Fleig, U.N. (1993). The centromere of budding yeast. BioEssays 15, 451-460. [PubMed]
Pidoux, A.L. and Allshire, R.C. (2000). Centromeres: getting a grip on chromosomes. Curr. Opin. Cell Biol. 12, 308-319. [PubMed]
Additional reference:
Kitagawa, R. (2009). Key players in chromosome segregation in Caenorhabditis elegans. Front. Biosci. 14, 1529-1557. [PubMed]
Marshall, O.J., Chueh, A.C., Wong, L.H., and Choo, K.H. (2008). Neocentromeres: new insights into centromere structure, disease development, and karyotype evolution. Am. J. Hum. Genet. 82, 261-282. [PubMed]

Microtubule-based motors drive movement
Figure: 7-9.
Reference:
Nicklas, R.B. (1989). The motor for poleward chromosome movement in anaphase is in or near the kinetochore. J. Cell Biol. 109, 2245-2255. [PubMed]
Barton, N.R. and Goldstein, L.S.B. (1996). Going mobile: microtubule motors and chromosome segregation. Proc. Natl. Acad. Sci. USA 93, 1735-1742. [PubMed] [Full text]
Walczak, C.E. and Mitchison, T.J. (1996). Kinesin-related proteins at mitotic spindle poles: function and regulation. Cell 85, 943-946.
Additional reference:
Fletcher, D.A., and Mullins, R.D. (2010). Cell mechanics and the cytoskeleton. Nature 463, 485-492. [PubMed]
Glotzer, M. (2009). The 3Ms of central spindle assembly: microtubules, motors and MAPs. Nat. Rev. Mol. Cell Biol. 10, 9-20. [PubMed]
Hirokawa, N., Noda, Y., Tanaka, Y., and Niwa, S. (2009). Kinesin superfamily motor proteins and intracellular transport. Nat. Rev. Mol. Cell Biol. 10, 682-696. [PubMed]
Sharp, D.J., Brown, H.M., Kwon, M., Rogers, G.C., Holland, G., and Scholey, J.M. (2000). Functional coordination of three mitotic motors in Drosophila embryos. Mol. Biol. Cell 11, 241-253. [PubMed]
Loughlin R., Riggs B, and Heald R. (2008). SnapShot: motor proteins in spindle assembly. Cell 134, 548-548.e1. [PubMed]
Pollard, T.D., and Cooper, J.A. (2009). Actin, a central player in cell shape and movement. Science 326, 1208-1212. [PubMed]
Rohn, J.L., and Baum, B. (2010). Actin and cellular architecture at a glance. J. Cell Sci. 123, 155-158. [PubMed]
Verhey, K.J., and Hammond, J.W. (2009). Traffic control: regulation of kinesin motors. Nat. Rev. Mol. Cell Biol. 10, 765-777. [PubMed]
Web link:
http://www.cellbio.duke.edu/kinesin/ Kinesin page.
http://raven.zoology.washington.edu/downTheTubes/ Movies that accompany the paper by Foe et al. (2000).

Separating chromatids
Reference:
Nasmyth, K. (2011). Cohesin: a catenase with separate entry and exit gates? Nat. Cell Biol. 13, 1170-1177. [PubMed]

Cytokinesis
Reference:
Field, C., Li, R. and Oegema, K. (1999). Cytokinesis in eukaryotes: a mechanistic comparison. Curr. Opin. Cell Biol. 11, 68-80. [PubMed]
Additional reference:
Fededa, J.P., and Gerlich, D.W. (2012). Molecular control of animal cell cytokinesis. Nat. Cell Biol. 14, 440-447. [PubMed]
Miller, A.L. (2011). The contractile ring. Curr. Biol 21, R976-978. [PubMed]
Wollert, T., Yang, D., Ren, X., Lee, H.H., Im, Y.J., and Hurley, J.H. (2009). The ESCRT machinery at a glance. J. Cell Sci. 122, 2163-2166. [PubMed]
Web link:
http://www.unc.edu/depts/salmlab/mafia/mafia.html Cytokinesis site.

Polyploidy
Additional reference:
Fox, D.T., and Duronio, R.J. (2013). Endoreplication and polyploidy: insights into development and disease. Development 140, 3-12. [PubMed]
Leslie M. (2014). Strength in numbers? Science 343, 725-727. [PubMed]

Regulation of the cell cycle
Figure: 7-10, 7-11.
Reference:
Pines, J. (1999). Four-dimensional control of the cell cycle. Nature Cell Biol. 1, E73-E79. [PubMed]
Additional reference:
Besson, A., Dowdy, S.F., and Roberts, J.M. (2008). CDK inhibitors: cell cycle regulators and beyond. Dev. Cell. 14, 159-169. [PubMed]
Malumbres, M., and Barbacid, M. (2009). Cell cycle, CDKs and cancer: a changing paradigm. Nat. Rev. Cancer 9, 153-166. [PubMed]
Morgan, D.O. (2008). SnapShot: Cell-cycle regulators I. Cell 135, 764-764.e1. [PubMed]
Morgan, D.O. (2008). SnapShot: Cell-cycle regulators II. Cell 135, 974-974.e1. [PubMed]
Satyanarayana, A., and Kaldis, P. (2009). Mammalian cell-cycle regulation: several Cdks, numerous cyclins and diverse compensatory mechanisms. Oncogene 28, 2925-2939. [PubMed]
Storchova, Z., and Kuffer, C. (2008). The consequences of tetraploidy and aneuploidy. J. Cell Sci. 121, 3859-3866. [PubMed]
Tyson, J.J., and Novak, B. (2008). Temporal organization of the cell cycle. Curr. Biol. 18, R759-R768. [PubMed]

Box 7-4. Glycogen phosphorylase and protein kinases
Reference:
Taylor, S.S., Buechler, J.A. and Yonemoto, W. (1990). cAMP-dependent protein kinase: framework for a diverse family of regulatory enzymes. Annu. Rev. Biochem. 59, 971-1005. [PubMed]
Additional reference:
Dephoure, N., Gould, K.L., Gygi, S.P., and Kellogg, D.R. (2013). Mapping and analysis of phosphorylation sites: a quick guide for cell biologists. Mol. Biol. Cell 24, 535-442. [PubMed]
Fimia, G.M. and Sassone-Corsi, P. (2001). Cyclic AMP signalling. J. Cell Sci. 114, 1971-1972. [Full text]
Web link:
http://jcs.biologists.org/cgi/content/full/114/11/1971/DC1 cAMP signalling at 'Cell science at a glance'.

Role of trans-acting factors
Figure: 7-12.
Reference:
Rao, P.N. and Johnson, R.T. (1970). Mammalian cell fusion studies on the regulation of DNA synthesis and mitosis. Nature 225, 159-164.

Frog embryos: MPF and cyclins
Figure: 7-13,7-14.
Reference:
Evans, T., Tosenthal, E.T., Youngblom, J., Distel, D. and Hunt, T. (1983). Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell 33, 389-396. [PubMed]
Lohka, M.J., Hayes, M.K. and Maller, J.L. (1988). Purification of maturation-promoting factor, an intracellular regulator of early mitotic events. Proc. Natl. Acad. Sci. USA 85, 3009-3013. [PubMed]
Hunt, T. (1989). Maturation promoting factor, cyclin and the control of M-phase. Curr. Opin. Cell Biol. 1, 268-274.
Additional reference:
Jackson, P.K. (2008). The hunt for cyclin. Cell 134, 199-202. [PubMed]
Masui, Y. (2000). The elusive cytostatic factor in the animal egg. Nat. Rev. Mol. Cell Biol. 1, 228-232. [PubMed]
Philpott, A., and Yew, P.R. (2005). The Xenopus cell cycle: an overview. Methods Mol. Biol. 296, 95-112. [PubMed]
Web link:
http://www.ucalgary.ca/UofC/eduweb/virtualembryo/initial.html From sperm and egg to embryo.

Yeasts: cdc mutants, START, and ORC
Figure: 7-16, 7-17.
Table: 7-1.
Reference:
Hartwell, L.H. and Weinert, T.A. (1989). Checkpoints: controls that ensure the order of cell cycle events. Science 246, 629-634. [PubMed]
Hartwell, L.H. (1991). Twenty-five years of cell cycle genetics. Genetics 129, 975-980.
Stillman, B. (1996). Cell cycle control of DNA replication. Science 274, 1659-1664. [PubMed]
Lee, D.G. and Bell, S.P. (2000). ATPase switches controlling DNA replication initiation. Current Opinion Cell Biol. 12, 280-285. [PubMed]
Additional reference:
Malumbres, M., and Barbacid, M. (2009). Cell cycle, CDKs and cancer: a changing paradigm. Nat. Rev. 9, 153-66. [PubMed]
Duncker, B.P., Chesnokov, I.N., and McConkey, B.J. (2009). The origin recognition complex protein family. Genome Biol. 10, 214. [PubMed]
Hartwell, L.H. (2002). Nobel Lecture. Yeast and cancer. Biosci. Rep. 22, 373-394. [PubMed]
Nurse, P.M. (2002). Nobel Lecture. Cyclin dependent kinases and cell cycle control. Biosci. Rep. 22, 487-499. [PubMed]
Web link:
http://jcs.biologists.org/cgi/content/full/115/5/869 The chromosome replication cycle from Cell Science at a Glance.

Box 7-5. The life cycles of two yeasts
Figure: 7-15.
Reference:
Hartwell, L.H. and Weinert, T.A. (1989). Checkpoints: controls that ensure the order of cell cycle events. Science 246, 629-634. [PubMed]
Hartwell, L.H. (1991). Twenty-five years of cell cycle genetics. Genetics 129, 975-980.

The G2 checkpoint in fission yeast
Reference:
Lee, M.G. and Nurse, P. (1988). Complementation used to clone a human homologue of the fission yeast cell cycle control gene cdc2. Nature 327, 31-35. [PubMed]
Additional reference:
Moseley, J.B., and Nurse, P. (2009). Cdk1 and cell morphology: connections and directions. Curr. Opin. Cell Biol. 21, 82-88. [PubMed]

The anaphase-promoting complex
Reference:
Zachariae, W. and Nasmyth, K. (1999). Whose end is destruction: cell division and the anaphase-promoting complex. Genes Dev. 13, 2039-2058. [Full text]
Additional reference:
Sivakumar, S., and Gorbsky, G.J. (2015). Spatiotemporal regulation of the anaphase-promoting complex in mitosis. Nat. Rev. Mol. Cell Biol. 16, 82-94. [PubMed]
Web link:
http://jcs.biologists.org/cgi/content/full/119/12/2401?etoc C. Acquaviva and J Pines at 'Cell science at a glance'.
http://www.nature.com/nrc/posters/proteasome/proteasome_poster.pdf Protesome inhibitors and cancer therapy.

Some other checkpoints
Reference:
Elledge, S.J. (1996). Cell cycle checkpoints: preventing an identity crisis. Science 274, 1664-1672. [PubMed]
Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.O., Botstein, D. and Futcher, B. (1998). Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9, 3273-3297. [PubMed] [Full text]
Additional reference:
Chin, C.F., and Yeong, F.M. (2010). Safeguarding entry into mitosis: the antephase checkpoint. Mol. Cell Biol. 30, 22-32. [PubMed]
Lara-Gonzalez, P., Westhorpe, F.G., and Taylor, S.S. (2012). The spindle assembly checkpoint. Curr. Biol. 22, R966-980. [PubMed]
Murray, A.W. (2011). A brief history of error. Nat. Cell Biol. 13, 1178-1182. [PubMed]
Niida, H., and Nakanishi, M. (2006). DNA damage checkpoints in mammals. Mutagenesis 21, 3-9. [PubMed]
Peters, J.M., Tedeschi, A., and Schmitz, J. (2008). The cohesin complex and its roles in chromosome biology. Genes Dev. 22, 3089-3114. [PubMed]

Growth factors
Reference:
Aaronson, S.A. (1991). Growth factors and cancer. Science 254, 1146-1153. [PubMed]
Cross, M. and Dexter, T.M. (1991). Growth factors in development, transformation and tumorigenesis. Cell 64, 271-280. [PubMed]
Norbury, C. and Nurse, P. (1992). Animal cell cycles and their control. Annu Rev. Biochem. 61, 441-470.
Additional reference:
Medzhitov, R., and Horng, T. (2009). Transcriptional control of the inflammatory response. Nat. Rev. Immunol. 9, 692-703. [PubMed]
Perkins, N.D. (2007). Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat. Rev. Mol. Cell Biol. 8, 49-62. [PubMed]
Zon, L.I. (2008). Intrinsic and extrinsic control of haematopoietic stem-cell self-renewal. Nature Immunol. 453, 306-313. [PubMed]

Size control
Table: 7-2.
Reference:
Raff, M.C. (1996). Size control: the regulation of cell numbers in animal development. Cell 86, 173-175.
Additional reference:
Edgar, B.A. (2006). How flies get their size: genetics meets physiology. Nat. Rev. Genet. 7, 907-916. [PubMed]
Moseley, J.B., Mayeux, A., Paoletti, A., and Nurse, P. (2009). A spatial gradient coordinates cell size and mitotic entry in fission yeast. Nature 459, 857-860. [PubMed]
Neumann, F.R., and Nurse, P. (2007). Nuclear size control in fission yeast. J. Cell Biol. 179, 593-600. [PubMed]

Deranged cycles and cancer
Table: 7-3.
Reference:
Bishop, J.M. (1991). Molecular themes in oncogenesis. Cell 64, 235-248.
Varmus, H. and Weinberg, R.A. (1993). 'Genes and the biology of cancer.' Scientific American Library, New York.
Sherr, C.J. (1996). Cancer cell cycles. Science 274, 1672-1677. [PubMed]
Additional reference:
Boveri, T. (2008). Concerning the origin of malignant tumours by Theodor Boveri. Translated and annotated by Henry Harris. J. Cell. Sci. 121, Suppl. 1, 1-84. [PubMed]
Gordon, D.J., Resio, B., and Pellman, D. (2012). Causes and consequences of aneuploidy in cancer. Nat. Rev. Genet. 13, 189-203. [PubMed]
Ptashne, M. (2009). Binding reactions: epigenetic switches, signal transduction and cancer. Curr. Biol. 19, R234-241. [PubMed]
Stratton, M.R., Campbell, P.J., and Futreal, P.A. (2009). The cancer genome. Nature 458, 719-724. [PubMed]
Web link:
http://www.cancer.org/ American Cancer Society site.
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?call=bv.View..ShowSection&rid=gnd.chapter.10 NIH site.
http://www.cancer.gov/ NCI site.

Box 7-6. The genetic basis of cancer
Reference:
Fearon, E.R. (1997). Human cancer syndromes: clues to the origin and nature of cancer. Science 278, 1043-1050. [PubMed]
Lengauer, C., Kinzler, K.W., and Vogelstein, B. (1998). Genetic instabilities in cancers. Nature 396, 643-649. [PubMed]
Additional reference:
Alexandrov, L.B. et al. (2013). Signatures of mutational processes in human cancer. Nature 500, 415-421. [PubMed]
Peto, J. (2001). Cancer epidemiology in the last century and the next decade. Nature 411, 390-395. [PubMed]
Stratton, M.R., Campbell, P.J., and Futreal, P.A. (2009). The cancer genome. Nature 458, 719-724. [PubMed]
Web link:
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?call=bv.View..ShowTOC&rid=gnd.TOC&depth=2 Genes and disease from NCBI; go to the cancer pages.
http://www.infobiogen.fr/services/chromcancer/ Atlas of Genetics and Cytogenetics in Oncology and Haematology.

Box 7-7. Oncogenes
Reference:
Cooper, G.M., Okenquist, S. and Silverman, L. (1980). Transforming activity of DNA of chemically transformed and normal cells. Nature 284, 418-421. [PubMed]
Weinberg, R.A. (1981). Use of transfection to analyze genetic information and malignant transformation. Biochem. Biophys. Acta 651, 25-35.
Additional reference:
Karnoub, A.E., and Weinberg, R.A. (2008). Ras oncogenes: split personalities. Nat. Rev. Mol. Cell Biol. 9, 517-531. [PubMed]
Pipas, J.M. (2009). SV40: Cell transformation and tumorigenesis. Virology 384, 294-303. [PubMed]
Hunter, T. (2009). Tyrosine phosphorylation: thirty years and counting. Curr. Opin. Cell Biol. 21, 140-146. [PubMed]
Vogt, P.K. (2012). Retroviral oncogenes: a historical primer. Nat. Rev. Cancer 12, 639-648. [PubMed]

Box 7-8. Tumor-suppressor genes
Reference:
Harris, H. (1986). The genetic analysis of malignancy. J. Cell Sci. 4 (Suppl.) 431-444.
Knudson, A.G. (1993). Antioncogenes and human cancer. Proc. Natl. Acad. Sci. USA 90, 10914-10921. [PubMed] [Full text]
Additional reference:
Berger, A.H., Knudson, A.G., and Pandolfi, P.P. (2011). A continuum model for tumour suppression. Nature 476, 163-169. [PubMed]
DeCaprio, J.A. (2009). How the Rb tumor suppressor structure and function was revealed by the study of Adenovirus and SV40. Virology 384, 274-284. [PubMed]
Levine, A.J. (2009). The common mechanisms of transformation by the small DNA tumor viruses: The inactivation of tumor suppressor gene products: p53. Virology 384, 285-293. [PubMed]
Venkitaraman AR. (2014). Cancer suppression by the chromosome custodians, BRCA1 and BRCA2. Science 343, 1470-1475. [PubMed]

Genes controlling proliferation
Table: 7-4.
Reference:
Cantley, L.C., Auger, K.R., Carpenter, C., Duckworth, B., Graziani, A., Kapeller, R. and Soltoff, S. (1991). Oncogenes and signal transduction. Cell 64, 281-302.
Solomon, E., Borrow, J. and Goddard, A.D. (1991). Chromosome aberrations and cancer. Science 254, 1153-1160. [PubMed]
Additional reference:
Feinberg, A.P., Ohlsson, R., and Henikoff, S. (2006). The epigenetic progenitor origin of human cancer. Nat. Rev. Genet. 7, 21-33. [PubMed]
Flint, J. (2013). Gwas. Curr. Biol. 23, R265-266. [PubMed]
Hunter, T. (2009). Tyrosine phosphorylation: thirty years and counting. Curr. Opin. Cell Biol. 21, 140-146. [PubMed]

Box. Tyrosine kinases as targets in cancer (new section)
Additional reference:
Baselga, J. (2006). Targeting tyrosine kinases in cancer: the second wave. Science 312, 1175-1178. [PubMed]
Johnson, L.N. (2009). Protein kinase inhibitors: contributions from structure to clinical compounds. Q. Rev. Biophys. 42, 1-40. [PubMed]

T antigen, p53, and Rb
Figure: 7-18, 7-19.
Reference:
Adams, J.M. and Cory, S. (1991). Transgenic models of tumor development. Science 254, 1161-1167. [PubMed]
Fanning, E. and Knippers, R. (1992). Structure and function of simian virus 40 large tumor antigen. Annu Rev. Biochem. 61, 55-85.
Bartek, J., Bartkova, J. and Lukas, J. (1996). The retinoblastoma protein pathway and the restriction point. Curr Op. Cell Biol. 8, 805-814. [PubMed]
Elledge, S.J. (1996). Cell cycle checkpoints: preventing an identity crisis. Science 274, 1664-1672. [PubMed]
Raff, M.C. (1998). Cell suicide for beginners. Nature 396, 119-122.
Dynlacht, B.D. (1997). Regulation of transcription by proteins that control the cell cycle. Nature 389, 149-152. [PubMed]
Clark, E.A., Golub, T.R., Lander, E.S. and Hynes, R.O. (2000). Genomic analysis of metastasis reveals an essential role for RhoC. Nature 406, 532-535. [PubMed]
Additional reference:
Brady, C.A., and Attardi, L.D. (2010). p53 at a glance. J. Cell Sci. 123, 2527-2532. [PubMed]
DeCaprio, J.A. (2009). How the Rb tumor suppressor structure and function was revealed by the study of Adenovirus and SV40. Virology 384, 274-284. [PubMed]
Junttila, M.R., and Evan, G.I. (2009). p53--a Jack of all trades but master of none. Nat. Rev. Cancer 9, 821-829. [PubMed]
Hallstrom, T.C., and Nevins, J.R. (2009). Balancing the decision of cell proliferation and cell fate. Cell Cycle 8, 532-535. [PubMed]
Lane, D.P., Cheok, C.F., and Lain, S. (2010). p53-based cancer therapy. Cold Spring Harb. Perspect. Biol. 2, a001222. [PubMed]
Levine, A.J. (2009). The common mechanisms of transformation by the small DNA tumor viruses: The inactivation of tumor suppressor gene products: p53. Virology 384, 285-293. [PubMed]
Pipas, J.M. (2009). SV40: Cell transformation and tumorigenesis. Virology 384, 294-303. [PubMed]
Vousden, K.H., and Prives, C. (2009). Blinded by the light: the growing complexity of p53. Cell 137, 413-31. [PubMed]
Web link:
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?call=bv.View..ShowSection&rid=gnd.chapter.10 Various cancer genes.
http://jcs.biologists.org/cgi/content/full/117/16/3411?etoc The Rb network from Cell Science at a glance.

Box 7-9. p53 and human tumors
Reference:
Levine, A.J. (1992). The p53 tumour suppressor gene and product. Cancer Survs. 12, 59-80.
Agarwal, M.L., Taylor, W.R., Chernov, M.V., Chernova, O.B. and Stark, G.R. (1998). The p53 network. J. Biol. Chem. 273, 1-4. [Full text]
Carr, A.M. (2000). Piecing together the p53 puzzle. Science 287, 1765-1766.
Additional reference:
Junttila, M.R., and Evan, G.I. (2009). p53--a Jack of all trades but master of none. Nat. Rev. Cancer 9, 821-829. [PubMed]
Levine, A.J. (2009). The common mechanisms of transformation by the small DNA tumor viruses: The inactivation of tumor suppressor gene products: p53. Virology 384, 285-293. [PubMed]
Vousden, K.H., and Prives, C. (2009). Blinded by the light: the growing complexity of p53. Cell 137, 413-31. [PubMed]
Web link:
http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=191170 p53 page of OMIM.

Box 7-10. Hereditary colorectal cancer
Figure: 7-20.
Reference:
Kinzler, K.W. and Vogelstein, B. (1996). Lessons from hereditary colorectal cancer. Cell 87, 159-170.
Additional reference:
Wood, L.D. et al. (2007). The genomic landscapes of human breast and colorectal cancers. Science 318, 1108-1113. [PubMed]
Web link
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?call=bv.View..ShowSection&rid=gnd.chapter.10  All types of cancer.

microRNAs in cancer
Reference:
Spizzo, R., Nicoloso, M.S., Croce, C.M., and Calin, G.A. (2009). SnapShot: microRNAs in cancer. Cell 137, 586-586. [PubMed]

Cancer therapy and checkpoints
Reference:
Waldman, T., Zhang, Y., Dillehay, L., Yu, J., Kinzler, K., Vogelstein, B. and Williams, J. (1997). Cell-cycle arrest versus cell death in cancer therapy. Nature Medicine 3, 1034-1036. [PubMed]
Additional reference:
Dawson, M.A., and Kouzarides, T. (2012). Cancer epigenetics: from mechanism to therapy. Cell 150, 12-27. [PubMed]
Reinhardt, H.C., and Yaffe, M.B. (2009). Kinases that control the cell cycle in response to DNA damage: Chk1, Chk2, and MK2. Curr. Opin. Cell Biol. 21, 245-255. [PubMed]
Web link
http://www.nature.com/nrc/posters/dnadamage/dna_poster.pdf The DNA damage response in tumorigenesis
and cancer treatment.

Apoptosis
Reference:
Evan, G. and Littlewood, T. (1998). A matter of life and cell death. Science 281, 1317-1322. [PubMed]
Raff, M.C. (1998). Cell suicide for beginners. Nature 396, 119-122.
Additional reference:
Cotter, T.G. (2009). Apoptosis and cancer: the genesis of a research field. Nat. Rev. Cancer 9, 501-507. [PubMed]
Fuchs, Y., and Steller, H. (2011). Programmed cell death in animal development and disease. Cell 147, 742-758. [PubMed]
Taylor, R.C., Cullen, S.P., and Martin, S.J. (2008). Apoptosis: controlled demolition at the cellular level. Nat. Rev. Mol. Cell Biol. 9, 231-241. [PubMed]
Web link:
http://www.ucalgary.ca/UofC/eduweb/virtualembryo/death.html Programmed cell death in development.
http://www.celldeath-apoptosis.org/ Cell death society.

The genetic basis of apoptosis
Figure: 7-21.
Reference:
Hengartner, M.O., Ellis, R.E. and Horwitz, H.R. (1992). Caenorhabditis elegans gene ced-9 protects cells from programmed cell death. Nature 356, 494-499. [PubMed]
Additional reference:
Peden, E., Killian, D.J., and Xue, D.l. (2008). Cell death specification in C. elegans. Cell Cycle 7, 2479-2306. [PubMed]

Box 7-11. Lineage analysis in Caenorhabditis elegans
Figure: 7-22.
Reference:
Sulston, J.E., Schierenberg, J., White, J. and Thompson, N. (1983). The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100, 64-119. [PubMed]
Additional reference:
Blaxter, M. (2011). Nematodes: the worm and its relatives. PLoS Biol. 9, e1001050. [PubMed]
Brenner, S. (2009). In the beginning was the worm. Genetics 182, 413-415. [PubMed]
Keller, P.J., Schmidt, A.D., Wittbrodt, J., and Stelzer, E.H. (2008). Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 322, 1065-1069. [PubMed]
Web link:
http://www.wormbase.org/ See the worm pedigree.
http://www.acs.ucalgary.ca/~browder/worms.html Movies of developing worms

Box 7-12. Caspases
Reference:
Thornberry, N.A. and Lazebnik, Y. (1998). Caspases; enemies within. Science 281, 1312-1316. [PubMed]
Additional reference:
Martin, S.J., Henry, C.M., and Cullen, S.P. (2012). A perspective on mammalian caspases as positive and negative regulators of inflammation. Mol. Cell 46, 387-397. [PubMed]
Salvesen, G.S., and Ashkenazi, A. (2011). Snapshot: caspases. Cell 147, 476. [PubMed]
Yuan, S., and Akey, C.W. (2013). Apoptosome structure, assembly, and procaspase activation. Structure 21, 501-515. [PubMed]

Activating the suicide machinery
Reference:
Polyak, K., Xia, Y., Zweir, J.L., Kinzler, K.W. and Vogelstein, B. (1997). A model for p53-induced apoptosis. Nature 389, 300-305. [PubMed]
Green, D.R. (2000). Apoptotic pathways: paper wraps stone blunts scissors. Cell 102, 1-4.
Additional reference:
Kurokawa, M., and Kornbluth, S. (2009). Caspases and kinases in a death grip. Cell 138, 838-854. [PubMed]
Pop, C., and Salvesen, G.S. (2009). Human caspases: activation, specificity, and regulation. J. Biol. Chem. 284, 21777-21781. [PubMed]
Hardwick, J.M., and Youle, R.J. (2009). SnapShot: BCL-2 proteins. Cell 138, 404. [PubMed]

Box 7-13. Death receptors
Reference:
Ashkenazi, A. and Dixit, V.M. (1998). Death receptors: signaling and modulation. Science 281, 1305-1308. [PubMed]
Additional reference:
Guicciardi, M.E., and Gores, G.J. (2009). Life and death by death receptors. FASEB J. 23, 1625-1637. [PubMed]
Web link:
http://jcs.biologists.org/cgi/content/full/118/2/265?etoc  Death receptor signalling from Cell Science at a glance.

 

Top | Home | Maintained by Peter Cook |