Updated on 17 October, 2016
Overview of the cell nucleus
Box 1-1. Discovery of cells, nuclei, and DNA
A sense of scale
Box 1-2. Microscopy: problems and solutions
Box 1-3. Green fluorescent protein
Thermal motion
Local concentrations
Structures of nucleic acids
The DNA double helix
Box 1-4. Translation
The length of DNA molecules
Box 1-5. Gel electrophoresis and blotting
Bending and twisting DNA
The structure of RNA
Recognizing specific DNA sequence
Box 1-6. DNA:protein binding - 'gel-shifts', 'footprinting', 'ChIP'
DNA-binding proteins
Box. Genome editing
Making large structures
Assembling nuclei in egg extracts
Subcellular localization
Generating asymmetric structures
Tensegrity architecture and cellular skeletons
Nuclear position and shape
Some evolutionary considerations
Genome size
Box 1-7. The amount of DNA in a human nucleus
Regulatory networks: redundant, robust, and noisy
Box 1-8. Protein:protein interactions - 'two-hybrid', 'FRET'
Box 1-9. Simulating complex control circuits
Sub-compartments and the origin of nuclei
Box 1-10. The three primary lineages of the living world
Overview
of the cell nucleus
Figure: 1-1.
Web link:
http://www.accessexcellence.org/AB/GG/ National Health Museum page of various molecules and cellular
structures.
http://micro.magnet.fsu.edu/cells/nucleus/nucleus.html From Molecular Expressions.
Box 1-1.
Discovery of cells, nuclei, and DNA
Reference:
Gall, J.G. (1996). 'A pictorial history: views of the cell'. American
Society of Cell Biology, Bethesda, Maryland.
Harris, H. (1999). 'The birth of the cell'. Yale University Press, New
Haven and London.
Additional reference:
Zacharias, H. (2001). Key word: chromosome. Chromosome Research 9,
345-355. [PubMed]
Web link:
http://www.mendelweb.org/
Classical genetics.
A sense of scale
Table: 1-1.
Figure: 1-2.
Reference:
Goodsell, D.S. (1993). 'The machinery of life'. Springer-Verlag, New
York.
Additional reference:
Frenkiel-Krispin, D., Ben-Avraham, I., Englander, J., Shimoni,
E., Wolf, S.G. and Minsky, A. (2004). Nucleoid restructuring in
stationary-state
bacteria. Mol. Microbiol. 51, 395-405. [PubMed]
Minton, A.P. (2006). Macromolecular crowding. Curr. Biol. 16, R269-R271. [PubMed]
Moran, U., Phillips, R., and Milo, R. (2010). SnapShot: key numbers in biology. Cell 141, 1262-1262. [PubMed]
Web link:
http://www.rcsb.org/pdb/education_discussion/molecule_of_the_month/poster_full.pdf Proteins to scale.
http://www.scripps.edu/pub/goodsell/ Cells and their contents drawn to scale.
http://www.nbr.wisc.edu/imr.html Dig into the National Biophotonics Resource, USA, for images.
http://learn.genetics.utah.edu/content/begin/cells/scale/ Primer from the University of Utah.
Box 1-2.
Microscopy: problems and solutions
Reference:
Bozzola, J.J. and Russell, L.D. (1992). 'Electron microscopy:
principles and techniques for biologists'. Jones and Bartlett, Boston.
Oldfield, R. (1994). 'Light microscopy: an illustrated guide'. Wolfe,
London.
Additional reference:
Cheng Y. (2015). Single-particle cryo-EM at crystallographic resolution. Cell 161, 450-457. [PubMed]
Galbraith CG., and Galbraith JA. (2011). Super-resolution microscopy at a glance. J Cell Sci. 124, 1607-1611. [PubMed]
Heuser, J. (2002). Whatever happened to the 'microtrabecular
concept'? Biol. Cell. 94, 561-596. [PubMed]
Johnson, J. (2012). Not seeing is not believing: improving the visibility of your fluorescence images. Mol. Biol. Cell 23, 754-757. [PubMed]
Kasper, R., and Huang, B. (2011). SnapShot: light microscopy. Cell 147, 1198-1198. [PubMed]
Liu, Z., Lavis, L.D., and Betzig, E. (2015). Imaging live-cell dynamics and structure at the single-molecule level. Mol. Cell 58, 644-659. [PubMed]
Lucic, V., Rigort, A., and Baumeister, W. (2013). Cryo-electron tomography: The challenge of doing structural biology in situ. J. Cell Biol 202, 407-419. [PubMed]
Roeder, A,H., Cunha, A., Burl, M.C., and Meyerowitz, E.M. (2012). A computational image analysis glossary for biologists. Development 139, 3071-3080. [PubMed]
Ronneberger, O., Baddeley, D., Scheipl, F., Verveer, P.J., Burkhardt, H., Cremer, C., Fahrmeir, L., Cremer, T., and Joffe, B. (2008). Spatial quantitative analysis of fluorescently labeled nuclear structures: Problems, methods, pitfalls. Chromosome Res. 16, 523-562. [PubMed]
Saper, C.B. (2009). A quide to the perplexed on the specificity of antibodies. J. Histochem. Cytochem. 57, 1-5.
[PubMed]
Wineya, M., Meehla, J.B., O'Toole, E.T., and Giddings, T.H Jr. (2014). Conventional transmission electron microscopy. Mol. Biol. Cell 25, 319-923. [PubMed]
Web link:
http://www.nasa.gov/offices/education/centers/kennedy/technology/Virtual_Lab.html Download and use a virtual scanning EM from NASA's 'Classroom' and 'Virtual lab'.
http://www.microscopy.fsu.edu/primer/ Good tutorials on 3-D microscopy from Molecular Expressions.
http://micro.magnet.fsu.edu/index.html Microscopy page from Molecular Expressions.
http://micro.magnet.fsu.edu/primer/virtual/confocal/index.html Confocal microscopy from Molecular Expressions.
http://www.microscopyu.com Nikon's site with tutorials on various aspects of microscopy.
http://www.olympusmicro.com/index.html Olympus' site with various interactive tutorials.
http://www.olympusmicro.com/primer/virtual/virtual.html Olympus' virtual microscopes.
Box
1-3. Green fluorescent protein
Figure: 1-2.
Reference:
Tsien, R.Y. (1998). The green fluorescent protein. Annu. Rev. Biochem. 67,
509-544. [PubMed]
Additional reference:
Chalfie, M. (2009). GFP: lighting up life. Proc. Natl. Acad. Sci. USA 106, 10073-10080. [PubMed]
Frigault, M.M., Lacoste, J., Swift, J.L., and Brown, C.M. (2009). Live-cell microscopy - tips and tools. J. Cell Sci. 122, 753-767. [PubMed]
Giepmans, B.N., Adams, S.R., Ellisman, M.H., and Tsien, R.Y. (2006). The fluorescent toolbox for assessing protein location and function. Science 312, 217-224. [PubMed]
Janicki, S.M., Tsukamoto, T., Salghetti, S.E., Tansey, W.P.,
Sachidanandam,
R., Prasanth, K.V., Ried, T., Shav-Tal, Y., Bertrand, E., Singer, R.H.
and
Spector, D.L. (2004). From silencing to gene expression;
real-time
analysis in single cells. Cell 116, 683-698. [PubMed]
Mueller, F., Mazza, D., Stasevich, T.J., and McNally, J.G. (2010). FRAP and kinetic modeling in the analysis of nuclear protein dynamics: what do we really know? Curr. Opin. Cell Biol. 22, 403-411. [PubMed]
Web link:
http://www.clontech.com/products/detail.asp?product_family_id=1417&product_group_id=209303&product_id=10419 Page of a supplier.
http://jcs.biologists.org/cgi/reprint/114/5/837.pdf
Fluorescent protein spectra.
Thermal motion
Reference:
Goodsell, D.S. (1993). 'The machinery of life'. Springer-Verlag, New
York.
Marshall, W.F., Straight, A., Marko, J.F., Swedlow, J., Dernburg, A.,
Belmont, A., Murray, A.W., Agard, D.A. and Sedat, J.W. (1997).
Interphase chromosomes undergo constrained diffusional motion in living
cells. Curr. Biol. 7, 930-939. [PubMed]
Additional reference:
Lippincott-Schwartz, J., Altan-Bonnet, N,. and Patterson, G.H. (2003). Photobleaching and photoactivation: following protein dynamics in living cells. Nat. Cell Biol. Suppl: S7-14. [PubMed]
Misteli, T. (2001). Protein dynamics: implications for nuclear
architecture and gene expression. Science 291, 843-847. [PubMed]
Web link:
http://www.uic.edu/classes/phys/phys461/phys450/ Biophysics of cells and molecules from Anjum Ansari and John F. Marko
(University of Illinois at Chicago).
Local
concentrations
Additional reference:
Guantes, R., Rastrojo, A., Neves, R., Lima, A., Aguado, B., and Iborra, F.J. (2015). Global variability in gene expression and alternative splicing is modulated by mitochondrial content. Genome Res. 25, 633-644. [PubMed]
Minton, A.P. (2006). Macromolecular crowding. Curr. Biol. 16, R269-R271. [PubMed]
Marenduzzo, D., Finan, K., and Cook, P.R. (2006). The depletion attraction: an underappreciated force driving cellular organization. J. Cell Biol. 175, 681-686. [PubMed]
Zhou, Z.H., McCarthy, D.B., O'Connor, C.M., Reed, L.J. and Stoops, J.K.
(2001). The remarkable structural and functional organization of the
eukaryotic pyruvate dehydrogenase complexes. Proc. Natl. Acad. Sci. USA 98, 14802-14807. [PubMed]
[Full
text]
Web link:
http://www.scripps.edu/pub/goodsell/ Cells and their contents drawn to scale.
Structures
of nucleic acids
Figure: 1-3, 1-4.
Reference:
Blackburn, G.M. and Gait, M.J. (1990). 'Nucleic acids in chemistry and
biology'. IRL Press, Oxford.
Web link:
http://www.accessexcellence.org/AB/GG/ National Health Museum page of various molecules and cellular
structures.
http://www.imb-jena.de/IMAGE.html Library of Biological Macromolecules.
http://www.umass.edu/microbio/rasmol/ This site tells where to get - and how to use - free software to
visualize 3D molecular structures, including DNA.
The DNA double
helix
Figure: 1-5, 1-6, 1-7.
Reference:
Watson, J.D. and Crick. F.H.C. (1953a). Molecular structure of nucleic
acids: a structure of deoxyribonucleic acid. Nature 171,
737-738. [Web link]
Watson, J.D. and Crick. F.H.C. (1953b). Genetic implications of the
structure of deoxyribonucleic acid. Nature 171, 964-967. [Web link]
Additional reference:
Agris, P.F. (2004). Decoding the genome: a modified view.
Nucleic Acids Res. 32, 223-238. [PubMed]
Chin, J.W. (2012). Reprogramming the genetic code. Science 336, 428-429. [PubMed]
Kresge, N., Simoni, R.D. and Hill, R.L. (2005). Using tryptophan
synthase to prove gene-protein colinearity: the work of Charles
Yanofsky. J. Biol. Chem. 280, e43. [PubMed]
Nirenberg, M. (2004). Deciphering the genetic code - a personal
account. Trends Biochem. Sci. 29, 46-54. [PubMed]
Pinheiro, V.B., Taylor, A.I., Cozens, C., Abramov, M., Renders, M., Zhang, S., Chaput, J.C., Wengel, J., Peak-Chew, S.Y., McLaughlin, S.H., Herdewijn, P., and Holliger, P. (2012). Synthetic genetic polymers capable of heredity and evolution. Science 336, 341-344. [PubMed]
Rich, A. (2006). Discovery of the hybrid helix & the first
DNA-RNA hybridization. J. Biol. Chem. 281, 7693-7696. [PubMed]
Sarafianos, S.G., Arnold, E. (2008). RT slides home... Science 322, 1059-1060. [PubMed]
Wells, R.D. (2007). Non-B DNA conformations, mutagenesis and disease. Trends Biochem. Sci. 32, 271-278. [PubMed]
Yanofsky, C. (2007). Establishing the triplet nature of the genetic code. Cell 128, 815-818. [PubMed]
Web link:
http://www.nature.com/nature/dna50/archive.html Nature's page with the original articles by Watson and
Crick.
http://www.nature.com/nature/dna50/Crick3.pdf Francis Crick looks back on the discovery of DNA.
http://www.accessexcellence.org/AB/GG/ National Health Museum page
gives images of DNA and its components.
http://learn.genetics.utah.edu/content/begin/dna/builddna/ Primer from the University of Utah.
http://learn.genetics.utah.edu/content/begin/tour/ Genetics primer from the University of Utah
Box 1-4.
Translation
Table: 1-2.
Reference:
Cech, T.R. (2000). The ribosome is a ribozyme. Science 289,
878-879. [PubMed]
Additional reference:
This box has been expanded into a new chapter.
The
length of DNA molecules
Figure: 1-8.
Reference:
Schwartz, D.C. and Cantor, C.R. (1984). Separation of yeast
chromosome-sized DNAs by pulsed field gradient gel electrophoresis.
Cell 37, 67-75. [PubMed]
Carle, G.F. and Olson, M.V. (1984). Separation of chromosomal DNA
molecules from yeast by orthogonal-field-alternation gel
electrophoresis. Nucl. Acids Res. 12, 5647-5664. [PubMed]
Griffith, J.D., Comeau, L., Rosenfeld, S., Stansel, R.M.,
Bianchi, A., Moss, H. and de Lange, T. (1999). Mammalian telomeres
end in a large duplex loop. Cell 97, 503-514. [PubMed]
Additional reference:
Bendich, A.J. (2001). The form of chromosomal DNA molecules in
bacterial cells. Biochimie 83, 177-186. [PubMed]
Wrestler, J.C., Lipes, B.D., Birren, B.W. and Lai, E. (1996).
Pulsed-field gel electrophoresis. Methods Enzymol. 272,
255-272.
Web link:
http://biotech.matcmadison.edu/resources/activities/dna/default.htm How to make DNA from a smoothie in a few minutes - an experiment everyone should do once in a lifetime.
Box
1-5. Gel electrophoresis and blotting
Reference:
Schwartz, D.C. and Cantor, C.R. (1984). Separation of yeast
chromosome-sized DNAs by pulsed field gradient gel electrophoresis.
Cell 37, 67-75. [PubMed]
Carle, G.F. and Olson, M.V. (1984). Separation of chromosomal DNA
molecules from yeast by orthogonal-field-alternation gel
electrophoresis. Nucl. Acids Res. 12, 5647-5664. [PubMed]
Hames, B.D. (1998). 'Gel electrophoresis of proteins: a practical
approach'. 3rd Ed. Oxford University Press, Oxford.
Additional reference:
Pederson, T. (2008). Turning a PAGE: the overnight sensation of SDS-polyacrylamide gel electrophoresis. FASEB J. 22, 949-953. [PubMed]
Web link:
http://learn.genetics.utah.edu/content/labs/gel/ Primer from the University of Utah.
Bending
and twisting DNA
Figure: 1-9.
Reference:
Wasserman, S.A. and Cozzarelli, N.R. (1986). Biochemical topology:
application to DNA recombination and replication. Science 232,
951-960. [PubMed]
Calladine, C.R. and Drew, H.R. (1992). 'Understanding DNA: the molecule
and how it works'. Academic Press, London.
Additional reference:
Bryant, Z., Stone, M.D., Gore, J., Smith, S.B., Cozzarelli, N.R. and
Bustamante, C. (2003). Structural transitions and elasticity from
torque measurements on DNA. Nature 424, 338-341. [PubMed]
Cozzarelli, N.R., Cost, G.J., Nollmann, M., Viard, T., and Stray, J.E. (2006). Giant proteins that move DNA: bullies of the genomic playground. Nat. Rev. Mol. Cell Biol. 7, 580-588. [PubMed]
Ohyama, T. (2001). Intrinsic DNA bends: an organizer of local chromatin
structure for transcription. Bioessays 23, 708-715. [PubMed]
Web link:
http://www.msri.org/publications/ln/msri/2000/molbio/sumners/1/ DNA knots.
http://alice.berkeley.edu/content/movies.php Movies of DNA from C. Bustamente.
The structure
of RNA
Figure: 1-10, 1-11.
Reference:
Blackburn, G.M. and Gait, M.J. (1990). 'Nucleic acids in chemistry and
biology'. IRL Press, Oxford.
Additional reference:
Agris, P.F. (2004). Decoding the genome: a modified view.
Nucleic Acids Res. 32, 223-238. [PubMed]
Kresge, N., Simoni, R.D., and Hill, R.L. (2005). The Discovery of
tRNA by Paul C. Zamecnik. J. Biol. Chem. 280, e37. [PubMed]
Web link:
http://www.accessexcellence.org/AB/GG/ National Health Museum page of various molecules and cellular
structures.
Recognizing
specific DNA sequences
Figure: 1-12, 1-13.
Reference:
Werner, M.H. and Burley, S.K. (1997). Architectural transcription
factors: proteins that remodel DNA. Cell 88, 733-736. [PubMed]
Box
1-6. DNA:protein binding - 'gel-shifts',
'footprinting', 'ChIP'
Reference:
Sauer, R.T. (1991). Protein-DNA interactions. Meth. Enzymol. 208,
1-700.
Kneale, G.G. (1994). 'DNA-protein interactions: principles and
protocols'. Chapman and Hall, New York.
Cosma, M.P., Tanaka, T. and Nasmyth, K. (1999). Ordered recruitment of
transcription and chromatin remodeling factors to a cell cycle-
and developmentally-regulated promoter. Cell 97, 299-311. [PubMed]
Additional reference:
Iyer, V.R., Horak, C.E., Scarfe, C.S., Botstein, D., Snyder, M. and
Brown, P.O. (2001). Genomic binding sites of the yeast cell-cycle
transcription factors SBF and MBF. Nature 409, 533-538. [PubMed]
Mackay, J.P., Sunde, M., Lowry, J.A., Crossley, M., and Matthews, J.M. (2007). Protein interactions: is seeing believing? Trends Biochem. Sci. 32, 530-531. [PubMed]
Pollard, T.D. (2010). A guide to simple and informative binding assays. Mol. Biol. Cell 21, 4061–4067. [PubMed]
DNA-binding
proteins
Figure: 1-14.
Reference:
Patikoglou, G. and Burley, S.K. (1997). Eukaryotic transcription
factor-DNA complexes. Annu. Rev. Biophys. Biomol. Struct. 26,
289-325. [PubMed]
Additional reference:
Baldwin, R.L. (2002). Protein folding: making a network of hydrophopic
clusters. Science 295, 1657-1658. [PubMed]
Cozzarelli, N.R., Cost, G.J., Nollmann, M., Viard, T., and Stray, J.E. (2006). Giant proteins that move DNA: bullies of the genomic playground. Nat. Rev. Mol. Cell Biol. 7, 580-588. [PubMed]
Howarth M. (2015). Say it with proteins: an alphabet of crystal structures. Nat. Struct. Mol. Biol. 22, 349. [PubMed]
Kuhlman, B. and Baker, D. (2000). Native protein sequences are
close
to optimal for their structures. Proc. Natl. Acad. Sci. USA 97,
10383-10388. [PubMed]
Web link:
http://www.expasy.ch The Swiss
Institute of Bioinformatics (SIB) contains many protein structures.
http://scop.mrc-lmb.cam.ac.uk/scop/ Database of modules used to build proteins.
http://www.pnas.org/misc/classics1.shtml Some original papers on protein structures by Pauling and Corey.
Box. Genome editing
Additional reference:
Doudna, J.A., and Charpentier, E. (2014). Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096. [PubMed]
Konermann, S., Brigham, M.D., Trevino, A.E., Joung, J., Abudayyeh, O.O., Barcena, C., Hsu, P.D., Habib, N., Gootenberg, J.S., Nishimasu, H., Nureki, O., and Zhang, F. (2015). Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517, 583-588.
[PubMed]
McMahon, M.A., Rahdar, M., and Porteus, M. (2012). Gene editing: not just for translation anymore. Nat. Methods 9, 28-31. [PubMed]
de Souza, N. (2012). Primer: genome editing with engineered nucleases. Nat. Methods 9, 27. [PubMed]
Making
large structures
Figure: 1-15.
Reference:
Caspar, D.L.D. and Klug, A. (1962). Physical principles in the
construction of regular viruses. Cold Spring Harbor Symp. Quant. Biol. 27,
1-24.
Additional reference:
Alber, F., Dokudovskaya, S., Veenhoff, L.M., Zhang, W., Kipper, J., Devos, D., Suprapto, A., Karni-Schmidt, O., Williams, R., Chait, B.T., Rout, M.P., and Sali, A. (2007). Determining the architectures of macromolecular assemblies. Nature 450, 683-694. [PubMed]
Fersht, A.R.and Daggett, V. (2002). Protein folding and unfolding at
atomic resolution. Cell 108, 573-582. [PubMed]
Karsenti, E. (2008). Self-organization in cell biology: a brief history. Nat. Rev. Mol. Cell Biol. 9, 255-262. [PubMed]
Misteli, T. (2005). Concepts in nuclear architecture. Bioessays 27, 477-487. [PubMed]
Rafelski, S.M., and Marshall, W.F. (2008). Building the cell: design principles of cellular architecture. Nat. Rev. Mol. Cell Biol. 9, 593-602. [PubMed]
Service RF. (2008). Problem solved* (*sort of). Science 321, 784-786. [PubMed]
Assembling
nuclei in egg extracts
Reference:
Wolffe, A. (1998). 'Chromatin: structure and function'. 3rd edition. Academic Press, London.
Additional reference:
Brown, D.D. (2004). A tribute to the Xenopus laevis oocyte and egg. J. Biol. Chem. 279, 45291-45299. [PubMed]
Subcellular
localization
Reference:
Andrade, M.A., O'Donoghue, S.I. and Rost, B. (1998). Adaptation of
protein surfaces to subcellular location. J. Mol. Biol. 276,
517-525. [PubMed]
[Full
text]
Additional reference:
Donnes, P., and Hoglund, A. (2004). Predicting protein subcellular localization: past, present, and future. Genomics Proteomics Bioinformatics 2, 209-215. [PubMed]
Tensegrity
architecture and cellular skeletons
Reference:
Forgacs, G. (1995). On the possible role of cytoskeletal filamentous
networks in intracellular signalling: an approach based on percolation.
J. Cell Sci. 108, 2131-2143. [Full text]
Chicurel, M.E., Chen, C.S. and Ingber, D.E. (1998). Cellular control
lies in the balance of forces. Curr. Opin. Cell Biol. 10,
232-239. [PubMed]
Gundersen, G.G. and Cook, T.A. (1999). Microtubules and signal
transduction. Curr. Opin. Cell Biol. 11, 81-94. [PubMed]
Additional reference:
Callaway, E. (2008). Bacteria's new bones. Nature 451, 124-126. [PubMed]
Wickstead, B., and Gull, K. (2011). The evolution of the cytoskeleton. J. Cell Biol. 194, 513-525. [PubMed]
Ingber, D.E. (2006). Cellular mechanotransduction: putting all the pieces together again. FASEB J. 20, 811-827. [PubMed]
Pollard, T.D., and Cooper, J.A. (2009). Actin, a central player in cell shape and movement. Science 326, 1208-1212. [PubMed]
Rohn, J.L., and Baum, B. (2010). Actin and cellular architecture at a glance. J. Cell Sci. 123, 155-158. [PubMed]
Web link:
Try searching for 'tensegrity' and you will find lots of pages.
Generating asymmetrical structures
Additional reference:
Green, J.B., and Sharpe, J. (2015). Positional information and reaction-diffusion: two big ideas in developmental biology combine. Development 142, 1203-1211.
[PubMed]
Macara, I.G., and Mili, S. (2008). Polarity and differential inheritance – universal attributes of life? Cell 135, 801-812. [PubMed]
Marshall, W.F. (2011). Origins of cellular geometry. BMC Biol. 9, 57. [PubMed]
Nuclear
position and shape
Reference:
Thompson, D.W. (1959). 'On growth and form'. 2nd Edition.
Cambridge University Press, Cambridge.
Reinsch, S. and Gönczy, P. (1998). Mechanisms of nuclear
positioning. J. Cell Sci. 111, 2283-2295. [PubMed]
[Full
text]
Additional reference:
Burke, B., and Roux, K.J. (2009). Nuclei take a position: managing nuclear location. Dev. Cell 17, 587-597. [PubMed]
Daga, R.R., Yonetani, A., and Chang, F. (2006). Asymmetric microtubule pushing forces in nuclear centering. Curr. Biol. 16, 1544-1550. [PubMed]
Huber, M.D., and Gerace, L. (2007). The size-wise nucleus: nuclear volume control in eukaryotes. J. Cell Biol. 179, 583-584. [PubMed]
Marshall, W.F. (2011). Origins of cellular geometry. BMC Biol. 9, 57. [PubMed]
Metzger, T., Gache, V., Xu, M., Cadot, B., Folker, E.S., Richardson, B.E., Gomes, E.R., and Baylies, M.K. (2012). MAP and kinesin-dependent nuclear positioning is required for skeletal muscle function. Nature 484, 120-124. [PubMed]
Mijaljica, D., and Devenish, R.J. (2013). Nucleophagy at a glance. J. Cell Sci. 126, 4325-4330. [PubMed]
Moseley, J.B., and Nurse, P. (2010). Cell division intersects with cell geometry. Cell 142, 184-188. [PubMed]
Solovei, I., Kreysing, M., Lanctôt, C., Kösem, S., Peichl, L., Cremer, T., Guck, J., and Joffe, B. (2009). Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution. Cell 137, 356–368. [PubMed]
Webster, M., Witkin, K.L., and Cohen-Fix, O. (2009). Sizing up the nucleus: nuclear shape, size and nuclear-envelope assembly. J Cell Sci 122, 1477-1486. [PubMed]
Reference:
Howard, J. (1982). 'Darwin'. Oxford University Press, Oxford.
Additional reference:
Bowler, P.J. (2009). Darwin's originality. Science 323, 223-226. [PubMed]
Jones, D. (1999). 'Almost like a whale: the origin of species updated'. Doubleday. London and New York.
Szostak, J.W. (2009). Origins of life: systems chemistry on early earth. Nature 459, 171-172. [PubMed]
Lynch, M., and Marinov, G.K. (2015). The bioenergetic costs of a gene. Proc Natl Acad Sci USA 112, 15690-15695. [PubMed]
Webber, C., and Ponting, C.P. (2004). Genes and homology. Curr Biol. 14, R332-333. [PubMed]
Web link:
http://darwin-online.org.uk/ The writings of Charles Darwin.
http://www.ucmp.berkeley.edu/history/evolution.html Museum of Paleontology at the University of California, Berkeley.
Genome size
Figure: 1-16.
Reference:
Jelinek, W.R. and Schmid, C.W. (1982). Repetitive sequences in
eukaryotic DNA and their expression. Annu Rev. Biochem. 51,
813-844. [PubMed]
Kazazian, H,H, (2000). L1 retrotransposons shape the mammalian genome.
Science 289, 1152-1153. [PubMed]
Additional reference:
Belancio, V.P., Hedges, D.J., and Deininger, P. (2008). Mammalian non-LTR retrotransposons: for better or worse, in sickness and in health. Genome Res. 18, 343-358. [PubMed]
Cordaux, R. (2008). The human genome in the LINE of fire. Proc. Natl. Acad. Sci. USA 105, 19033-19034. [PubMed]Doolittle, W.F. (2013). Is junk DNA bunk? A critique of ENCODE. Proc. Natl. Acad. Sci. USA 110, 5294-5300.
[PubMed]
Eddy SR. (2012). The C-value paradox, junk DNA and ENCODE. Curr. Biol. 22, R898-899. [PubMed]
Mariner, P.D., Walters, R.D., Espinoza, C.A., Drullinger, L.F., Wagner, S.D., Kugel, J.F., Goodrich, J.A. (2008). Human Alu RNA is a modular transacting repressor of mRNA transcription during heat shock. Mol. Cell 29, 499-509. [PubMed]
Lane, N., and Martin, W. (2010). The energetics of genome complexity. Nature 467, 929-934. [PubMed]
Web link:
http://www.nature.com/genomics/Nature's
Genome Gateway.
http://nar.oupjournals.org/ Go to the Database issue of Nucleic Acids
Research, which describes many different on-line databases.
Box
1-7. The amount of DNA in a human nucleus
Reference:
Morton, N,E. (1991). Parameters of the human genome. Proc. Natl. Acad.
Sci. USA 88, 7474-7476. [PubMed]
[Full text]
Gene
number and organization
Table: 1-3, 1-4, 1-5.
Reference:
Miklos, G.L. and Rubin, G.M. (1996). The role of the genome project in
determining gene function: insights from model organisms. Cell 86,
521-429. [PubMed]
Adams, M.D. et al. (2000). The genome sequence of Drosophila
melanogaster. Science 287, 2185-2195. [PubMed]
Additional reference:
The ENCODE Project Consortium. (2011). A User's Guide to the Encyclopedia of DNA Elements (ENCODE). PLoS 9, e1001046.
[PubMed]
Finnegan, D.J. (2012). Retrotransposons. Curr. Biol. 22, R432-437. [PubMed]
International Human Genome Sequencing Consortium (2001). Initial
sequencing and analysis of the human genome. Nature 409,
860-921. [PubMed]
[Full
text]
Little, P.F. (2005). Structure and function of the human genome. Genome
Res. 15, 1759-1766. [PubMed]
Venter, J.C. et al. (2001). The sequence of the human genome.
Science 291, 1304-1351. [PubMed]
Web link:
http://www.wormbase.org/ The
worm genome.
http://flybase.bio.indiana.edu/ The Drosophila genome.
http://www.genome.gov/page.cfm?pageID=10001694
The human genome.
http://www.nature.com/genomics/ Nature's Genome Gateway.
http://www.reactome.org/ A
curated resource of core pathways and
reactions in human biology.
Regulatory
networks: redundant, robust, and noisy
Reference:
Cyert, M.S. (2001). Regulation of nuclear localization during
signaling. J. Biol. Chem. 276, 20805-20808. [Full text]
Elena, S.F. and Lenski, R.E. (1997). Test of synergistic interactions
among deleterious mutations in bacteria. Nature 390, 395-398. [PubMed]
Brugge, J.S. and McCormick, F. (1999). Cell regulation: intracellular
networking. Curr. Opin. Cell Biol. 11, 173-176.
Weng, G., Bhalla, U.S. and Iyenger, R. (1999). Complexity
in biological signaling systems. Science 284, 92-96. [PubMed]
Eisenberg, D., Marcotte, E.M., Xenarios, I. and Yeates, T.O. (2000).
Protein function in the post-genomic era. Science 405, 823-826.
[PubMed]
Additional reference:
Almaas, E., Kovacs, B., Vicsek, T., Oltvai, Z.N. and Barabasi, A.L.
(2004).
Global organization of metabolic fluxes in the bacterium Escherichia
coli.
Nature 427, 839-843. [PubMed]
Eldar, A., and Elowitz, M.B. (2010). Functional roles for noise in genetic circuits. Nature 467, 167-173. [PubMed]
Guantes, R., Rastrojo, A., Neves, R., Lima, A., Aguado, B., and Iborra, F.J. (2015). Global variability in gene expression and alternative splicing is modulated by mitochondrial content. Genome Res. 25, 633-644. [PubMed]
Hartman, J.L., Garvik, B. and Hartwell, L. (2001). Principles for the
buffering of genetic variation. Science 291, 1001-1004. [PubMed]
Huh, W.K., Falvo, J.V., Gerke, L.C., Carroll, A.S., Howson, R.W.,
Weissman,
J.S. and O'Shea. (2003). Global analysis of protein localization
in
budding yeast. Nature 425, 686-691. [PubMed]
Kondo, S., and Miura, T. (2010). Reaction-diffusion model as a framework for understanding biological pattern formation. Science 329, 1616-1620. [PubMed]
Lestas, I., Vinnicombe, G., and Paulsson, J. (2010). Fundamental limits on the suppression of molecular fluctuations. Nature 467, 174-178. [PubMed]
Phillips, R., and Milo, R. (2009). A feeling for the numbers in biology. Proc. Natl. Acad. Sci. USA 106, 21465-21471. [PubMed]
Raj, A., and van Oudenaarden, A. (2008). Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135, 216-226. [PubMed]
Seebacher, J., and Gavin, A.C. (2011). SnapShot: protein-protein interaction networks. Cell 144, 1000. [PubMed]
Stelling, J., Sauer, U., Szallasi, Z. and Doyle, F.J. (2004).
Robustness of cellular functions. Cell 118, 675-685. [PubMed]
Tanner, J.M., and Rutter, J. (2016). You are what you eat… or are you? Dev. Cell 36, 483-485. [PubMed]
Vidal, M., Cusick, M.E., and Barabási, A.L. (2011). Interactome networks and human disease. Cell 144, 986-998. [PubMed]
Web link:
http://www.systems-biology.org/ A portal for systems biology; go to 'CellDesigner' to see some complex
pathways.
http://bionumbers.hms.harvard.edu/ Database of useful biological numbers.
Box 1-8.
Protein:protein interactions -
'two-hybrid', 'FRET'
Reference:
Fields, S. and Song, O. (1989). A novel genetic system to
detect protein-protein interactions. Nature 340, 245-246. [PubMed]
Selvin, P.R. (1995). Fluorescence resonance energy transfer. Methods
Enzymol. 246, 300-334.
Tsien, R.Y. and Miyawaki, A. (1998). Seeing the machinery
of live cells. Science 280, 1954-1955. [PubMed]
Walhout, A.J.M., Sordella, R., Lu, X., Hartley, J.L., Temple, G.F.,
Brasch, M.A., Thierry-Mieg, N. and Vidal, M. (2000). Protein
interaction mapping in C. elegans using proteins involved in vulval
development. Science 287, 116-122. [PubMed]
Additional reference:
Sekar, R.B. and Periasamy, A. (2003). Fluorescence resonance
energy transfer (FRET) microscopy imaging of live cell protein
localizations. J. Cell Biol. 160, 629-633. [PubMed]
Tinoco, I. Jr., and Gonzalez, R.L. Jr. (2011). Biological mechanisms, one molecule at a time. Genes Dev 25, 1205-1231. [PubMed]
Vidal, M., and Fields, S. (2014). The yeast two-hybrid assay: still finding connections after 25 years. Nat Methods 11, 1203-1206. [PubMed]
Web link:
http://www.probes.com/handbook/boxes/0422.html FRET page from a supplier.
Box
1-9. Simulating complex control circuits
Reference:
Barkal, N. and Leibler, S. (1997). Robustness in simple biochemical
networks. Nature 387, 913-917. [PubMed]
Noble, D. (2002). The rise of computational biology. Nat.
Rev. Mol. Cell Biol. 3, 459-463. [PubMed]
Weng, G., Bhalla, U.S. and Iyenger, R. (1999). Complexity
in biological signaling systems. Science 284, 92-96. [PubMed]
Additional reference:
Ajo-Franklin, C.M., Drubin, D.A., Eskin, J.A., Gee, E.P., Landgraf, D., Phillips, I., and Silver, P.A. (2007). Rational design of memory in eukaryotic cells. Genes Dev. 21, 2271-2276. [PubMed]
Berg, H.C. (2008). Bacterial flagellar motor. Curr. Biol. 18, R689-691. [PubMed]
Blais, A. and Dynlacht, B.D. (2005). Constructing transcriptional
regulatory networks. Genes Dev. 19,
1499-1511. [PubMed]
Drubin, D.A.., Way, J.C., and Silver, P.A. (2007). Designing biological systems. Genes Dev. 21, 242-254. [PubMed]
Rao, C.V., Kirby, J.R. and Arkin, A.P. (2004). Design and
Diversity in Bacterial Chemotaxis: A Comparative Study in Escherichia
coli and Bacillus subtilis. PLoS Biol. 2, e49. [PubMed]
Raser, J.M. and O'Shea, E.K. (2005). Noise in gene expression:
origins, consequences, and control. Science 309, 2010-2023. [PubMed]
von Dassow, G., Meir, E., Munro, E.M. and Odell, G.M. (2000). The
segment polarity network is a robust developmental module. Nature 406,
188-192. [PubMed]
Various authors (2002) in 'Modelling Complex Biological Systems', a
special edition of BioEssays 24 (12), December 2002. [Full
text]
Vilar, J.M., Guet, C.C. and Leibler, S. (2003). Modeling network
dynamics: the lac operon, a case study. J. Cell Biol. 161,
471-476. [PubMed]
Sub-compartments
and the origin of nuclei
Figure: 1-17.
Reference:
Gould, G.W. and Dring, G.J. (1979). On a possible relationship between
bacterial endospore formation and the origin of eukaryotic cells. J.
Theor. Biol. 81, 47-53.
Cavalier-Smith, T. (1988). Origin of the cell nucleus. BioEssays 9,
72-78.
Sogin, M.L. (1991). Early evolution and the origin of eukaryotes. Curr.
Opin. Genet. Dev. 1, 457-463. [PubMed]
Lake, J.A. and Rivera, M.C. (1994). Was the nucleus the first
endosymbiont? Proc. Nat. Acad. Sci. USA 91, 2880-2881. [Full text]
Bendich, A.J. and Drlica, K. (2000). Prokaryotic and eukaryotic
chromosomes: what's the difference? BioEssays 22, 481-486.
[PubMed]
Additional reference:
An, S., Kumar, R., Sheets, E.D., and Benkovic, S.J. (2008). Reversible compartmentalization of de novo purine biosynthetic complexes in living cells. Science 320, 103-106. [PubMed]
Bendich, A.J. (2007). The size and form of chromosomes are constant in the nucleus, but highly variable in bacteria, mitochondria and chloroplasts. Bioessays 29, 474-483. [PubMed]
Dacks, J.B., Field, M.C., Buick, R., Eme, L., Gribaldo, S., Roger, A.J., Brochier-Armanet, C., and Devos D.P. (2016). The changing view of eukaryogenesis - fossils, cells, lineages and how they all come together. J Cell Sci 129, 3695-3703. [PubMed]
Fuerst, J.A. (2005). Intracellular compartmentation in planctomycetes. Annu. Rev. Microbiol. 59, 299-328. [PubMed]
Chan, Y.H., and Marshall, W.F. (2012). How cells know the size of their organelles. Science 337, 1186-1189. [PubMed]
Wilson, K.L., and Dawson, S.C. (2011). Functional evolution of nuclear structure. J. Cell Biol. 195, 171-181. [PubMed]
Box 1-10. The three
primary lineages of the
living world
Reference:
Gray, M.W. (1992). The endosymbiont hypothesis revisited.
Int. Rev. Cytol. 141, 233-355.
Gray, M.W. (1996). A third form of life. Nature 383, 299-300.
Martin, W. and Müller, M. (1998). The hydrogen hypothesis for the
first eukaryote. Nature 392, 37-41. [PubMed]
Additional reference:
de Duve, C. (2007). The origin of eukaryotes: a reappraisal. Nat. Rev. Genet. 8, 395-403. [PubMed]
Simpson, A.G. and Roger, A.J. (2004). The real 'kingdoms' of
eukaryotes. Curr. Biol. 14, R693-696. [PubMed]
Szostak, J.W. (2009). Origins of life: systems chemistry on early earth. Nature 459, 171-172. [PubMed]