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2001 was the year of the human genome, but the new
information has had little immediate impact on the field of nuclear
structure. Rather, functional studies — especially on transcription
— are leading us to a better understanding of how genomes
might organise themselves into structures we call nuclei.
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Abbreviations
CBP CREB-binding protein
CFP cyan fluorescent protein
GFP green fluorescent protein
GR glucocorticoid receptor
NOR nucleolar organising region
ORC origin recognition complex 
SRC-1 steroid receptor co-activator 1
TBP TATA-box binding protein
YFP yellow fluorescent protein

Introduction
2001 will be remembered as the year of the human genome
[1••,2••], but how did that draft sequence impact on the
field of nuclear structure? One might say, ‘Little’, because
we are still such a long way from being able to predict
three-dimensional structure from the primary DNA
sequence. Nevertheless, the main principles underpinning
nuclear architecture are becoming clearer, and many of
those principles are surprising, because they concern 
function rather than structure. Therefore, in this review we
will mainly cover the way nuclear functions influence structure.

The draft genome sequence proved to be important for
what it did not contain — a class of repeated sequences
obviously underpinning genomic architecture. For example,
many models for interphase and mitotic structure involve
looping of the chromatin fibre by attachment to a peripheral
lamina or internal scaffold, and we might expect the
attachment points to be highly conserved. But the various
genome projects have failed to point to any of the 
molecules involved.

Self-organisation
DNA topoisomerase II has long been a strong candidate for
the protein that binds to one of these repeats and organises
the genome. It is found in the isolated nuclear matrix and
chromosomal scaffold, apparently strategically placed at
attachment points. However, a recent study using living
cells makes it unlikely that it plays such a role [3••].

Mammals have two isoforms of this topoisomerase (α and β).
These were tagged with green fluorescent protein (GFP),
and photobleached, revealing that the entire population of
both forms exchanges too rapidly with the soluble pool to
be a structural component (Figure 1). Moreover, the axial
distribution seen in the mitotic scaffold could be generated
artefactually; in the living mitotic cell, the α isoform
remains fully mobile and uniformly distributed, but it col-
lapses into the axial scaffold on lysis in a hypotonic buffer.

If established models are being eliminated, what are the
alternatives? A recent review provides an excellent way of
thinking about the possibilities [4••]. Macromolecular
structures are generated in two fundamentally different
ways. Some virus particles ‘self-assemble’ to a fixed plan,
to attain a true thermodynamic equilibrium. The particles
are stable and static, and survive in the absence of a pool of
unincorporated subunits once they have been released
from the host. Models involving chromatin loops tied 
permanently to a scaffold are of this type. However, many
cellular structures are built using a different — ‘self-organ-
ising’ — principle. For example, cytoskeletons lack a rigid
architecture, and they are intrinsically unstable. They 
persist only by exchanging subunits with others in their
surroundings, and they collapse if those subunits are
removed or if function is inhibited. Are genomes self-
organising structures? If they are, we might guess that
transcription would be a candidate for the major function
that drives the organisation. It might do so if polymerases
scattered along the genome were to cluster into aggregates
to form the genome into a surrounding ‘cloud’ of loops [5].
The nucleolus provides an example of how active 
transcription units cluster in this way. This structure is
assembled under the control of cyclin-dependent kinases
[6•] when transcription of the genes encoding rRNA
resumes after cell division. It is disassembled when tran-
scription ceases during prophase. Reassembly has been
studied using stable lines expressing the nucleolar proteins
fibrillarin and Nop52 tagged with GFP [7•]. Competent
nucleolar organising regions (NORs) — which might be on
different chromosomes — first recruit the two proteins,
become active, and eventually aggregate with others to
bring whole chromatin territories towards the re-forming
nucleolus. The structure of interchromatin granule clusters
is similarly dynamic, as overexpression of the serine/arginine
cdc2-like kinase (Clk)/STY — but not a catalytically 
inactive mutant — causes their redistribution throughout
the nucleoplasm [8•]. In all these cases, the structure
depends on function, and vice versa.

The various genome projects are also facilitating the 
cataloguing of where different proteins are to be found
within nuclei. For example, one recent proteomic analysis
combined mass spectrometry and sequence database
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searches to catalogue nucleolar proteins of HeLa nuclei
[9•], and more than 100 proteins have been localised to 
different nuclear compartment in mouse nuclei using a
visual screen after inserting GFP randomly into genes
[10•]. Unfortunately, the rules that would enable us to
deduce a protein’s location from the primary DNA
sequence still remain elusive [11•].

Chromatin dynamics
It is a truism that nuclear structure changes dramatically
during development, and the introduction of GFP tags
makes it possible to begin to catalogue these movements
in living cells. However, there are considerable technical
and analytical problems in interpreting the motions of one
region of chromatin relative to others that might be tum-
bling in the nucleus (Figure 2). The group of John Sedat
and David Agard continues to provide the intellectual

framework with which to view these movements. For
example, they monitored chromatin motion in spermatocyte
nuclei of Drosophila. DNA repeats encoding the lac operator
were integrated into different chromosomal regions, and
the GFP-tagged repressor expressed in the same cells. As
the GFP–repressor binds to the operator, the arrays appear
as fluorescent spots that can be followed by time-lapse
photography. ‘Fast’ and ‘slow’ (random-walk) components
were uncovered. Early in G2 phase, a ‘fast’ motion occurs
within a small domain (radius ~0.5 µm), while the ‘slow’
one is confined to a larger, chromosome-sized domain and
this ceases as cells approach meiotic prophase [12••].
Analogous experiments on four chromosomal regions in
the yeast genome monitored movements in S phase: early-
and late-replicating origins are highly mobile in G1 phase,
frequently moving at 0.5 µm/10 s, but this slows when
replication begins. By contrast, telomeres and centromeres
are both constrained during G1 and S phase [13•]. In higher
cells, a particular site moves into the nuclear interior 
transiently in early G1 and again in early S phase [14•],
while loci at or near the nuclear periphery are significantly
less mobile than other more nucleoplasmic loci [15•].

Over the years, different studies have led to different ideas
about how stably histones are bound to the template; 
photobleaching studies with GFP-tagged histones are 
now providing the answers. Thus, it is now known that 
most histone H1 exchanges within seconds [16], H2B over 
minutes, and H3 and H4 over hours [17•]. The differing

Figure 1

Measuring protein binding in living cells using fluorescence recovery
after photobleaching (FRAP). (a) A protein tagged with GFP is shown
distributed throughout the nucleus, and photobleaching the blue area
creates a non-fluorescent square that is gradually repopulated by
fluorescent molecules from the surroundings. Therefore, the intensity of
fluorescence in the blue area first falls on bleaching, and then rises.
Information about the diffusion and binding properties of the protein
can be extracted from the recovery kinetics. (b) An unbleached
molecule (green sphere) in the surroundings may diffuse (following a
random walk) into the bleached square. Because diffusion is rapid, the
intensity recovers quickly. (c) A structural protein would be expected to
dissociate from that structure slowly; therefore, it enters the bleached
rectangle slowly, and this is reflected by a slower increase in intensity
after bleaching.
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Figure 2

Possible motions of GFP-tagged repressors (green spheres) bound to
an array of lac operators integrated into a chromatin loop. In this model
[5], several loops are attached through engaged polymerases and
transcription factors to a transcription ‘factory’ (red spheres) to form a
surrounding ‘cloud’ (blue). The tagged repressors can move in various
ways. (a) Although tethered (in this case to a factory), they can diffuse
from side to side. (b) The whole cloud can move relative to
neighbouring clouds, but is nevertheless constrained by them.
(c) Attachments may be lost/regained (e.g. as tethering polymerases
terminate or initiate) to increase or decrease the contour length of
loops. (d) Nucleosomes in one loop may aggregate with those in
another (e.g. when chromatin condenses in G2 phase) to decrease
mobility. (e) Whole chromatin territories can move relative to others, as
the nucleus rotates and tumbles in the cell [43].
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exchange of H2B compared with H3/H4 was surprising, as
all form the same nucleosomal structure. Significantly,
exchange of a minority of H2B seems to depend on 
continuing transcription, and this has recently been con-
firmed in vitro [18•]. This suggests that the transcribing
polymerase displaces only H2A and H2B from the 
template, but not H3 or H4.

Replication, recombination and repair
Any DNA molecule seems to be replicated normally when
introduced into Xenopus eggs or egg extracts. This suggests
that the initiation of replication early in development 
does not involve specific DNA sequences, as it does 
later. However, initiation at random would generate some
inter-origin distances that would be too long to be replicated
during the short cycle times found soon after fertilisation.
On incorporation of [3H]thymidine or bromodeoxyuridine
and analysis of the distribution of labelled DNA in spread
fibres, most origins are found to be non-randomly spaced
5–15 kb apart. This spacing is increased by immuno-
depleting origin recognition complexes (ORCs) from the
extract, and can be explained in two general ways: in 
one, the added DNA is organised into loops, and this 

organisation then determines where origins fire; in the
other, origins are assembled at any point on chromatin, but
an ‘exclusion zone’ around each origin prevents ORCs
from binding nearby [19•].

The complexes that work on DNA are very large. Do they
pre-exist, or are they only assembled when needed?
Various studies indicate that the latter usually applies. For
example, recombination between DNA homologues
involves Rad51, Rad52 and Rad54, amongst many other
proteins. Mammalian cells expressing one or other of these
RAD proteins — which were named because of their
involvement in the response to radiation — were tagged
with GFP and exposed to ionising radiation so that the 
proteins became concentrated in foci around the induced
DNA damage. Each of the three behaved independently
of the others, indicating that they were not part of a pre-
formed complex [20••]. An earlier study on the complex
involved in nucleotide excision repair led to a similar 
conclusion [21], and now dissection of that pathway sug-
gests that the active complex is built by the successive
recruitment of XPC–hHR23B, TFIIH, XPG, XPA and
ERCC1–XPF, before the incisions are made on each side

Figure 3

A model for part of a transcription factory
involved in message production. One set of
five sites is illustrated: polymerising (red oval);
capping (black circle); splicing (purple
arrowheads); polyadenylating (red
arrowheads); and translating (green ovals).
Individual components exchange continually
with others, but only the polymerase (Pol) is
shown doing so here. A promoter binds to the
polymerase, which then reels in the template
and extrudes the transcript. The 5′ end of the
transcript is soon captured by a capping site,
and a cap added. As elongation continues,
nascent RNA remains attached at both ends
as it loops through sites involved in splicing,
translational proofreading and
cleavage/poly(A) addition (indicated by ‘A’).
The transcript also passes through a
ribosome, where it is scanned for
inappropriately placed stop codons; if found,
the transcript and truncated protein are
degraded. At the end of the cycle, the
template is released, the processed transcript
and completed polypeptide move away, and
any transcript 3′ of the cleavage/poly(A) 
site is degraded. Modified from [44].
(Copyright  [2002, J Wiley and Sons]. This
material is used by permission of Wiley–Liss,
Inc., a subsidiary of John Wiley & Sons, Inc.)
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of the damage [22•]. Executing these DNA transactions
through dynamic multiprotein complexes, rather than 
stable holocomplexes, allows flexibility and crosstalk
between the replication, recombination and repair pathways.

Message production and export
This field has been transformed by two recent discoveries.
One is the elucidation of the structure — or rather 
structures — of RNA polymerase II, the enzyme responsi-
ble for transcribing most genes. The structures are derived
from two crystal forms of a ten-subunit polymerase (at 
2.8 and 3.1 Å, respectively) [23••], and from an elongation
complex containing the nascent transcript (at 3.3 Å) [24••].
The other is the realisation that transcription, capping,
splicing, polyadenylation and preparation for export do not
occur sequentially but together, with one process influencing
another (Figure 3) [25]. So, although we now know the
molecular disposition of the subunits within the poly-
merase, we know little about that polymerase in the
context of the larger multifunctional ‘factory’ that produces
the message.

The best view of the relative disposition of the macro-
molecular complexes associated with a maturing transcript
comes from studies on the Balbiani ring 3 (BR3) gene in
the giant chromosomes of the salivary gland of Chironomus
tentans. This gene has 38 introns, of which more than half
are co-transcriptionally excised, and its three-dimensional
structure was reconstructed using electron tomography
[26••]. Each gene is associated with 20–25 nascent tran-
scripts, and each transcript with one RNA polymerase II
complex and one splicing complex. These complexes do
not have well-defined structures; rather, spliceosomal 
factors seem to be continuously added to and released from
splicing complexes as the transcript continues to be made.

Transcription and chromatin structures
Steroids act quickly to re-programme gene expression, and
several studies have examined their effects on higher-order
chromatin structure in living cells. In one study, a tandem
array encoding the promoter of the mouse mammary
tumour virus driving a ras reporter gene was inserted into
the chromosome, and then a sub-line was derived that 
stably expressed the glucocorticoid receptor (GR) tagged
with GFP. On adding steroid hormone, the GFP–GR
bound to the array to give a discrete spot, which later
decondensed and recondensed as transcription was 
successively stimulated and repressed [27•]. In other studies,
a cyan fluorescent protein (CFP)-tagged chimera of the lac
repressor fused with the oestrogen receptor (CFP–LacER)
was bound to an array of lac operators, and interactions
with yellow fluorescent protein (YFP)-tagged steroid
receptor co-activator 1 (SRC-1) or CREB-binding protein
(CBP) monitored. On adding ligand, nucleoplasmic
YFP–SRC-1 and YFP–CBP are rapidly recruited to the
arrays, and adding antagonist reverses the process [28•].
The initial binding of the tagged receptor also decondenses
the arrays, and adding ligand partially reverses this [29•]. 

Analogous experiments monitored the effects of targeting
the acidic activation domain of VP16 to a specified 
chromosome site. This activated the target gene, and the
site moved from a predominantly peripheral location to a
more interior one [14•]. These studies also suggest the
polymerase plays an important structural role in regulating
chromatin condensation.

Although particular genes do not occupy absolutely specified
places within nuclei, they do have preferences, even 
in mitotic chromosomes [30]. Thus, fluorescence in situ
hybridisation (FISH) shows that artificial arrays of U2
small nuclear RNA genes often lie close to coiled (Cajal)
bodies [31]. Similarly, the gene-rich major histocompatibility
complex usually abuts a promyelocytic leukemia body
[32], and active immunoglobulin loci are found more often
than not in the middle of pro-B nuclei [33•]. The nuclear
lamins may even organise some transcription, as disrupting
them by overexpressing a dominant-negative lamin
mutant inhibits polymerase II activity, but not that of 
polymerases I and III [34•]. These arrangements are likely
to be conserved, as those territories that tend to be found
centrally in one primate species are usually found in the
same place in others [35•]. As heterochromatin often 
condenses on to the lamina or nucleolus, and as synteny is
so well preserved in primates, it remains to be seen
whether differences in amounts of heterochromatin carried
by different chromosomes is the main determinant of the
nuclear position.

The histones in and around active genes also carry a 
distinct set of post-translational modifications — a ‘histone
code’ — that regulate access of polymerases to the tem-
plate [36], and these have been localised relative to active
genes. For example, methylation of Lys4 and Lys9 in 
histone H3 correlates with gene activity and inactivity,
respectively; and — as expected — the inactive X chromo-
some in human cells carries these expected marks
[37•,38•]. These marks may be carried through mitosis, so
enabling a gene to ‘remember’ whether it had been active.
Photobleaching using the TATA-box binding protein
(TBP) tagged with GFP suggests another way of marking
a gene: the tagged TBP remains bound to mitotic chromo-
somes — presumably still on promoters [39] — where it is
strategically placed to re-form new polymerising complexes
as the cell emerges from mitosis [40•].

Translation
It is widely believed that translation only occurs in the
cytoplasm, but some also seems to occur in nuclei [41••].
Cells were permeabilised, incubated with biotin–lysine-
tRNA or BODIPY–lysine-tRNA, and any tagged
polypeptides localised. Some label was found in the cyto-
plasm; but, unexpectedly, some was also found in discrete
nuclear sites — transcription factories — and a fraction of
this nuclear labelling depended on concurrent transcription.
The nuclear translation might be used to ‘proof-read’ new
transcripts to see if they have appropriately placed 
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initiation and termination codons. This idea is supported
by the observation that transcripts containing inappropriately
placed termination codons do accumulate close to nuclear
transcription sites, implying that a checkpoint operates
there [42]. Therefore, translation must be added to the other
functions occurring in the transcription factory (Figure 3).

Conclusions
If the various functions of DNA drive the self-organisation
of the genome into the three-dimensional structure that
we call a nucleus, it is clear that the final structure will
inevitably depend on how the various conflicting forces
generated by those functions are resolved. And as those
functions vary in activity throughout the cell cycle, the
structure will inevitably change from moment to moment
(Figure 2). Despite the difficulties associated with 
describing an ever-changing structure, we now believe that
we have many of the appropriate techniques for analysing
such structures.
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