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Summary

There is now convincing evidence that genomes are
organized into loops, and that looping brings distant

genes together so that they can bind to local concen-
trations of polymerases in ‘‘factories’’ or ‘‘hubs.’’ As

there remains no systematic analysis of how looping
affects the probability that a gene can access binding

sites in such factories/hubs, we used an algorithm that
we devised and Monte Carlo methods to model a DNA

or chromatin loop as a semiflexible (self-avoiding)
tube attached to a sphere; we examine how loop thick-

ness, rigidity, and contour length affect where particu-
lar segments of the loop lie relative to binding sites on

the sphere. Results are compared with those obtained

with the traditional model of an (infinitely thin) freely
jointed chain. They provide insights into the packing

problem (how long genomes are packed into small nu-
clei), and action-at-a-distance (how firing of one origin

or gene can prevent firing of an adjacent one).

Introduction

Pro- and eukaryotic genomes are positioned within cells.
At the global level, whole bacterial chromosomes are of-
ten oriented so that their replication origins lie nearer the
poles than the midline (Gitai et al., 2005), and gene-rich
chromosomal segments in human fibroblasts are found
nearer the nuclear center than gene-poor ones (Bolzer
et al., 2005). Proximity to other active genes also influ-
ences whether an origin fires, or a gene is transcribed
(Emerman and Temin, 1986; Lucas et al., 2000; Cook,
2003; Jun et al., 2004). Moreover, there is now convincing
evidence that genomes are organized into loops, and
that looping plays an important role in controlling gene
activity by bringing distant genes together so that they
can bind to local concentrations of relevant proteins
(Cook, 2003; Chambeyron and Bickmore, 2004). For ex-
ample, replicating DNA is looped by attachment to ‘‘fac-
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tories’’ containing DNA polymerases at the membrane in
bacteria and the nuclear interior in eukaryotes (Lemon
and Grossman, 1998; Cook, 1999). In addition, different
genes are transcribed in association with various nuclear
‘‘bodies,’’ including rDNA and tRNA genes with nucleoli,
histone genes with Cajal bodies, globin genes with ‘‘ac-
tive chromatin hubs’’ or factories, and the major histo-
compatibility complex with promyelocytic leukemia
bodies (de Laat and Grosveld, 2003; Spector, 2003; Os-
borne et al., 2004). As these various structures contain
high concentrations of polymerases and associated fac-
tors, it seems likely that rates of replicational and tran-
scriptional initiation will be governed by position in the
loop and the frequency with which genes can access
binding sites on the structures.

Although loops have been modeled previously
(Levene and Crothers, 1986; Marko and Siggia, 1995;
Merlitz et al., 1998; Rippe, 2001; Vilar and Leibler, 2003;
Ballaeff et al., 2004; Mergell et al., 2004; Vilar and Saiz,
2005), there remains no systematic analysis of how
gene position affects the probability of accessing a bind-
ing site in such structures. Several interrelated problems
complicate such modeling. First, the structure of chro-
matin in vivo is unknown (Woodcock and Dimitrov,
2001). Second, a loop contains too many constituents
to be modeled at the atomic level, so simplifications
must be applied; for example, 20 kbp of (unlooped) nu-
cleosomal DNA was modeled as a zig-zagging string of
oblate ellipsoids, but the spacing and angles between el-
lipsoids profoundly affect results (Wedemann and Lan-
gowski, 2002; Mergell et al., 2004). Third, the popular ap-
proaches used to model DNA have important
deficiencies in this context. Thus, those involving freely
jointed or worm-like chains (De Gennes, 1979) work
well when applied to naked double-stranded DNA
(where polymer persistence length is much greater
than thickness); however, their application to structures
like a chromatin fiber (where the persistence length of
40–100 nm is roughly comparable to the thickness of
the 30 nm fiber; Katritch et al., 2000) is problematic.
They also have the drawback that the chains are infinitely
thin, but we require that no two segments of the loop
occupy the same volume in and around the binding site
in the crowded cell where the DNA density is high
(Luby-Phelps, 2000; Minton, 2001). Self-avoidance is
usually introduced by forcing the chain to follow a nonin-
tersecting path along a regular lattice, or by modeling
nucleosomes as impenetrable beads connected by
springs (Katritch et al., 2000; Wedemann and Langowski,
2002; Mergell et al., 2004).

Here, we report a new, to our knowledge, method to
explicitly model a DNA or chromatin loop as a semiflexi-
ble (self-avoiding) tube (Gonzalez and Maddocks, 1999;
Marenduzzo and Micheletti, 2003) attached to a sphere
representing a factory/hub/body. Unlike models involv-
ing freely jointed or worm-like chains, ours is not easily
tractable analytically. Therefore, we apply Monte Carlo
procedures and examine how loop thickness, rigidity,
and contour length affect where particular segments of
the loop lie relative to binding sites on the sphere.
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Results—which are compared with those obtained by
modeling an infinitely thin chain (see Experimental Pro-
cedures)—provide insights into the packing problem
(how long genomes are packed into small nuclei), ac-
tion-at-a-distance (how activity of one gene influences
that of neighboring genes), and nuclear context (why
genes are active in certain positions and not others).

Results and Discussion

The Approach
As discussed in the Introduction, loops of DNA (in pro-
karyotes) or chromatin (in eukaryotes) are often tethered
to structures called factories, hubs, or bodies. These
structures contain high concentrations of polymerases
and their associated factors, so it seems likely that the
rates of initiation of replication and transcription will be
governed by the frequency with which genes in the
loop access binding sites on the structure. Therefore,
we model chromatin (and DNA) as a self-avoiding tube
of appropriate thickness that is tethered at its ends to
a sphere (Figure 1). Starting with a circular tube, succes-
sive, randomly chosen moves are used to generate
a contorted loop; after creating many equivalent struc-
tures, the probability that a particular promoter or origin
occupies a specific volume is calculated. This probabil-
ity reflects the way the point diffuses through space.
Tube length in nm can be converted to kbp assuming
1, 5, and 8 nucleosomes (200, 1000, and 1400 bp DNA)
are packed into 11 nm of the linear length of 11, 20,
and 30 nm tubes, respectively. However, values in kbp
should be treated cautiously, as packing ratios are un-
known (Bystricky et al., 2004); the trends seen will
have greater significance.

The Emptiness of Outer Space
and the Packing Problem

Figure 2A shows where points at different distances, s,
along the bottom half of a loop are likely to be relative
to the center of the sphere; values for the top half are
identical, as the loop is symmetric. The structure mod-
eled is a typical chromatin loop attached to a transcrip-
tion factory in a dividing HeLa cell (Cook, 1999). Zig-zag-
ging models for chromatin have supplanted those
involving 30 nm solenoids (Woodcock and Dimitrov,
2001), so tube diameter was set at 20 nm to reflect a wider
zig-zagging fiber that can interpenetrate to some extent.
As expected, no point on the loop is ever found within the
sphere or the surrounding shell that extends a tube ra-
dius from the surface (i.e., R + D = 47.5 nm; Figure 1B).
The 34 nm point on the loop is concentrated toward the
outer limit of its accessible volume (i.e., R + D + 34 =
81.5 nm; Figure 2A); the high density near the surface
limits folding, so the tube tends to start straight out
from the sphere. Conversely, the 417 nm point is rarely
seen beyond 200 nm (Figure 2A); once the tube extends
into less crowded space, it tends to fold, and few struc-
tures exist with the needed long and straight arms. In
other words, nine-tenths the volume that is accessible
in theory is essentially completely empty. This packing
occurs spontaneously, without extra energy cost. As
we shall demonstrate below, this emptiness of outer
space allows close packing of loops associated with dif-
ferent spheres to reduce significantly the scale of the
‘‘packing’’ problem—how a long contour length of DNA
might be folded into a tiny nucleus (in man, w2 m are
packed into w10 mm).

Points between the 34 and 417 nm points have inter-
mediate distributions, but increasing distance has pro-
gressively less effect on the volume occupied by most
chromatin. Thus, the peak in probability of the 77 nm
point is significantly further out than that of the 34 nm
point (Figure 2A); space is still crowded close to the
sphere. However, points between 162 and 417 nm have
essentially the same distributions; all share the same
(emptier) space (Figure 2A). Shorter and longer loops
yield similar trends. Thus, the 34 nm points in loops
with contour lengths of 425–2550 nm occupy essentially
the same space (data not shown), which is reflected by
the constant distance between the center of the sphere

Figure 1. The Approach

(A) A circular tube of uniform thickness (capped at each end by

a hemisphere) is tethered to a sphere. Two points on the tube are se-

lected at random, and the intervening segment rotated at a randomly

chosen angle between 230º and +30º. If any part of the tube finds

itself in space occupied by other parts of the tube or the sphere,

the move is rejected; this process is repeated until an acceptable

move is found. After w20,000 successful moves, the tube has adop-

ted a random looped structure, and the position in 3D space of a par-

ticular point, p, is determined. This process is repeated to generate

w30,000 such structures, and the average position of p is calculated.

Structures are visualized with ‘‘Rasmol’’ software.

(B) Rejection criteria and characteristics of tube and binding zone.

Points, p1, p2, .pn are scattered along the tube axis. Two portions

of the tube (length, L; radius, D) do not occupy the same space if parts

of the axis are separated by R2D. This is monitored by determining if

radii of circles going through any triplet of axial points i, j, k are RD;

then, tight bends incompatible with both tube thickness and too

close an approach of distance portions of the tube are prevented.

Tube thickness prevents the axis approaching within D of the surface

of the sphere (gray zone). Positions of three binding zones are shown.
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and the peak in probability (Figure 2B). For the 417 nm
points the distance between sphere center and peak in-
creases asymptotically as contour length increases
(Figure 2B). The small radius of gyration of the loop (De
Gennes, 1979) and spherical hull radius (which reflects
the volume of both sphere and loop; see Experimental
Procedures) are both much smaller than half the contour
length, and so consistent with each loop occupying a tiny
fraction of the accessible volume (Figure 2C). Both quan-
tities vary with loop length, L, according to the law a +
bL0.6, where a and b are constants (Figure 2C, legend);
this law is typical of a self-avoiding walk.

Inert, ‘‘Hot,’’ and ‘‘Cold’’ Zones
The probability of being found close to the surface of the
sphere is of special interest, as it may determine func-
tion. Thus, the frequency of collision of origins and pro-

Figure 2. Loops Spontaneously Pack Close to the Sphere

(A) Emptiness of outer space. The drawing illustrates a ‘‘standard’’

loop attached to a sphere; the probabilities that different points on

the centerline of the loop (from 34 to 417 nm) are found within suc-

cessive 8.5 nm shells around the sphere are shown in the graph (bot-

tom). For detailed parameters concerning this and other loops, see

Experimental Procedures. All points on the loop pack close to the

surface of the sphere; most of the accessible volume is beyond

200 nm and is essentially empty.

(B) Dependence of position of peak probability relative to the sphere

center (measured with curves like those in [A] for loops of different

length). Peak probabilities for 34 nm points on loops of different

lengths are all found at roughly the same distance from the center

of the sphere; in contrast, those for the 417 nm points increase as-

ymptotically as contour length increases.

(C) Radius of gyration of loops with different lengths, and spherical

hull radius. Both gyration and hull radius (which reflects the volume

of sphere plus loop) are much smaller than half the contour length;

this means that each loop occupies a tiny fraction of the accessible

volume, and this allows close packing of other spheres and their

loops. Data points lie on the curve f(L) = a + bL0.6, where a = 8.08

and b = 1.05 (red line), and a = 10.26 and b = 2.49 (green line).
moters with polymerases concentrated in the factory/
hub/body to which the loop is tethered probably influ-
ences initiation frequencies, and so overall rates of rep-
lication and transcription (Cook, 1999). The curve in the
lower half of Figure 3A illustrates the probabilities that
points on the loop shown above it (which is the same
as that modeled in Figure 2A) are found within a binding
zone close to the surface. Consider the lower half of the
loop (the pattern in the top half is again identical, as the
binding zone lies symmetrically between tethering
points). As expected, points with tethers too short to
reach the binding zone (i.e., in segment a, which is shown
in black in the illustration in Figure 3A) are never found
within it; this may underlie the phenomena of ‘‘origin ex-
clusion’’ and ‘‘transcriptional interference,’’ where firing
of one origin or gene prevents replication or transcription
of an adjacent one (Emerman and Temin, 1986; Lucas
et al., 2000; Cook, 2003; Jun et al., 2004). It has always
been difficult to explain such action-at-a-distance, but
here we see it is an inevitable consequence of the orga-
nization; tethering one gene to a polymerase in a factory/
hub (with consequent replication or transcription of the
tethered gene) prevents an adjacent gene in segment
a from binding to the same factory/hub (and so initiating).
Moreover, our predictions are in rough accord with ex-
perimental results. For example, our segment a extends
several kbp, which compares favorably with observa-
tions that firing of one origin prevents firing of another
within 4–5 kbp (Jun et al., 2004), and that transcription

Figure 3. Binding Probabilities

(A) The illustration demonstrates the standard loop illustrated in

Figure 2A, and the probabilities that different points at different frac-

tional distances, s, along the loop are found within binding zone 1 are

shown in the graph (bottom). Inert (a), hot (b), and cold (c) zones are

indicated; the hot and cold zones may be eu- and heterochromatic,

respectively.

(B–D) Effects of variations in tube length, width, and persistence

length on the probability that different positions along the standard

loop occupy binding zone 1. Peak probabilities are the lowest for

long, wide, and rigid loops; therefore, heterochromatin is likely to

be out in long loops as thick and rigid fibers.
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of one gene prevents transcription of another lying about
the same distance away (Emerman and Temin, 1986)
(note, however, that the length of a is sensitive to model-
ing details, and especially to the distance between teth-
ering point and binding zone [see below]).

In contrast to segment a, the next segment (i.e., b) can
access the binding zone with high probability (Figure 3A);
however, the probability soon falls off as one goes further
out along the loop (i.e., into segment c in Figure 3A).
Therefore, we might expect potentially active genes to
be found in the ‘‘hot’’ segment b, and rarely active ones
in ‘‘cold’’ segment c (see also the discussion of eu- and
heterochromatin below). As at least 20% and 28% of
the known genes on human chromosomes 21 and 22
lie within 1 and 10 kbp of another (Adachi and Lieber,
2002), position would then play a significant role in deter-
mining whether binding of one gene inhibits or stimulates
activity of an adjacent one. These results show that dif-
ferent segments in the loop have very different (albeit
low) probabilities of binding.

Similar inert, hot, and cold segments are seen as the
contour length of the loop is varied (Figure 3B).

Tube Thickness and Stiffness
We next varied tube thicknesses between 2.5 and 30 nm
(the diameters of hydrated double-stranded DNA and
inert chromatin), and focused on the effects of self-
avoidance, as they cannot be analyzed with freely jointed
chains. We tuned the bending rigidity of the tube so that
its persistence length was the same for all thicknes-
ses considered; we also tuned sphere radius so that
R + D—which determines the volume excluded to the
tubecenterline—remained constant at47.5nm.Then,self-
avoidance alone underlies the effects seen (see Experi-
mental Procedures). All thicknesses yield the same gen-
eral pattern, but thinner tubes give peaks slightly closer
to the sphere, as they can make sharper turns (Figure 3C).
Moreover, probabilities fall as thickness increases (Fig-
ure 3C); they reflect the ratio of the number of configura-
tions with a point in the binding zone relative to all possi-
ble configurations, and increasing thickness reduces the
former more than the latter (as crowding near the surface
increases relatively more than that in outer space). It is to
be noted that the 2.5 nm curve is indistinguishable from
that given by a (zero thickness) worm-like chain with per-
sistence length of 40 nm; however, the 11 nm curve is
clearly different (data not shown). Stiffening the tube by
increasing persistence length also decreases probabili-
ties in the cold region by more than an order of magni-
tude (Figure 3D); bending stiffer tubes back to access
the binding zone costs more energy. In contrast, peaks
generally become larger and narrower; stiffer tubes are
straighter and have increased probabilities of accessing
the binding zone, but numbers fall relatively to all possi-
ble configurations (the particular discretization length [a;
Figure 1B] and position in the loop [s] chosen for analysis
influence the precise value of the peak probability [see
Experimental Procedures]; here, they combine to yield
a value for a persistence length of 100 nm that is lower
than that for 70 nm [Figure 3D]).

Eu- and Heterochromatin

We have seen that distance, thickness, and rigidity all
conspire together to minimize access to the binding
zone. We would then predict that the most active parts
of the genome (i.e., euchromatin) would be found in seg-
ment b, and the least active parts (i.e, heterochromatin)
out in thick and rigid fibers in segment c. Various results
(also obtained with HeLa cells) are consistent with these
predictions (reviewed by Cook, 1999): (1) detaching
most of the loop with nucleases preferentially removes
inactive genes; (2) heterochromatin is typically com-
posed of dense, thick, fibers; (3) the distant cold seg-
ment constitutes w75% of the loop, and this compares
with the observed value of 68%–84% chromatin being
heterochromatic (Kimura and Cook, 2001).

What might trigger heterochromatinization of distant
segments? Nucleosomal concentration falls off with dis-
tance from the sphere, so infrequent contacts between
nucleosomes in outer space could trigger the alteration
in histone code that promotes aggregation.

Large Spheres and Nuclear Context

Increasing sphere radius increases the probability that
‘‘hot’’ segments access the binding zone (Figure 4A);
the distance from tethering point to binding zone (db) de-
creases as the curvature of the sphere decreases, and
db affects the probability (see below). However, there
is also a competing effect: increasing sphere radius de-
creases the probability that cold segments are found in
the binding zone (Figure 4A), and this is again due to the
increased crowding near the sphere surface (this effect
is captured with the freely jointed chain [Figure 5A]). As
a result, there is a trade-off between increasing peak
probabilities and decreasing distal ones.

These results help explain why the most active genes
always seem to be associated with large structures.
Consider, for example, replication in a mammalian cell,
which begins in small factories that grow progressively
during S phase (Cook, 1999). Growth in factory size will
then progressively increase the probabilities that even
poor origins in the hot zone can initiate, to ensure com-
plete genome duplication by the end of S phase. More-
over, we might expect larger factories to possess more

Figure 4. Effect of Sphere Radius and Position of Binding Zone

(A) The effect of sphere radius on the probability that different posi-

tions along the standard loop occupy binding zone 1 (see Figure 1B).

Peak probabilities increase as radius increases; therefore, active

genes are likely to be attached to large structures.

(B) Effect of placing the binding zone in the positions shown in

Figure 1B on the probability that different positions along the stan-

dard loop occupy the binding zone. Positions on both arms of the

loop are plotted. Proximity to the binding zone has a marked effect

(compare the heights of the two peaks on each of the three curves).



Modeling Chromatin Loops
201
binding sites than do smaller ones, and this would in-
crease peak probabilities even further. A similar effect
may explain why bacterial replication factories are
placed at the cell membrane (Lemon and Grossman,
1998)—an origin attached to what is effectively a sphere
of infinite radius has an increased probability of binding.
Moreover, the most highly transcribed eukaryotic genes
are also associated with large structures rich in the
needed polymerases (e.g., rDNA genes associate with
nucleoli, histone genes with Cajal bodies, globin genes
in erythroid cells with large transcription factories; Spec-
tor, 2003; Osborne et al., 2004); promoter occupancy of
the binding zone increases as radius increases to ensure
the maximum rate of transcription. However, a promoter
in a cold segment is less likely to be found in the binding
zone (Figure 4A), and so there may be a trade-off be-
tween increasing peak probabilities and decreasing dis-
tal ones, which may result in a compromise over factory
radius.

Position of Binding Zone
Precisely which point in the hot segment has the highest
probability depends on tube width, persistence length,
and sphere radius (Figures 3B–3D and 4A); it is also
very sensitive to distance between tethering points
(not shown) and position of the binding zone. For exam-
ple, moving the zone progressively closer to one tether-
ing point progressively increases peak probabilities in
the nearest arm, while reducing those in the distant
arm—as might be expected (Figure 4B; positions along
both arms of the loop are illustrated, and probabilities
are plotted logarithmically). Strikingly, however, distant
segments are colder than in the symmetric case. This ef-
fect is not captured by the freely jointed chain, and is
due to steric hindrance between segments close to the
tethering point (compare Figures 4B and 5B).

Figure 5. Binding Probabilities for Some Freely Jointed Chains

(A) Effects of varying sphere radius. The probability that a point at

position x along a loop (N = 100) tethered to a sphere of radius neg-

ligible with respect to the radius of gyration, or to a sphere with infin-

ite radius (i.e., plane), occupies a binding zone that is symmetrically

placed between tethering points is given. Probabilities have been

scaled relative to that found for a point (p[50]) at position N/2. It

can be seen that the increase in volume excluded to the chain

when it is attached to a plane renders the segments close to the cen-

ter of the loop consistently ‘‘colder.’’ This effect is also seen with the

self-avoiding tube.

(B) Effect of varying position of binding zone. The probability—

scaled as in (A)—that a point at position x along a loop (N = 100) teth-

ered to a sphere of infinite radius (plane) occupies different binding

zones is given. Distances between the binding zone and each teth-

ering point are indicated (total distance is 6 units). The relative posi-

tioning of tethering and binding zones affects peak height, but less

than in the case of a self-avoiding tube (compare with Figure 4B).
Conclusions
We employed a new, to our knowledge, algorithm and
Monte Carlo methods to model a loop of DNA (or chro-
matin) attached to a sphere (representing a factory/
hub/body) in two ways—as a flexible tube of finite thick-
ness (Figure 1), and as an infinitely thin freely jointed
chain (see Experimental Procedures). The tube is clearly
a closer approximation of the biological structure, and it
yields results that are qualitatively different from those
obtained with the traditional approach (Figures 3C and
4B illustrate some of the most obvious differences).
Moreover, fitting looping probabilities to freely jointed
or worm-like chains may lead to misleading values for
persistence length; for example, two tubes with different
thickness but similar stiffness (Figure 3C) would yield dif-
ferent persistence lengths. In contrast, fitting the proba-
bilities to the tube should yield information on all param-
eters defining the tube and sphere. Our results also
provide insights into the packing problem (how long
genomes are packed into small nuclei), action-at-a-
distance (how activity of one gene influences that of
neighboring genes), and nuclear context (why genes
are active in certain positions and not others). We hope
that, as detailed information on loop structure becomes
available, these results will enable us to make quantita-
tive predictions about gene activity.

Experimental Procedures

A loop is modeled both as a self-avoiding tube and as a freely jointed

chain (a worm-like chain with small bending rigidity is expected to

behave in the same manner).

The Self-Avoiding Tube

We model a loop as a semiflexible tube (contour length, L) of finite

thickness 2D (Gonzalez and Maddocks, 1999; Marenduzzo and Mi-

cheletti, 2003) and bending rigidity Kb. Finite thickness impacts on

two distinct features of polymer conformation. First, it constrains

the local radius of curvature to be not less than D to avoid singular-

ities. Second, it prevents any distant portions of the tube from occu-

pying the same volume; the tube is self-avoiding, and centerlines of

any two portions must be separated by more than 2D (Figure 1B).

Self-avoidance is achieved by ensuring that radii of circles going

through any triplet of points on the discretized centerline is greater

than D (Figure 1B; Gonzalez and Maddocks, 1999; Maritan et al.,

2000; Marenduzzo and Micheletti, 2003). Other implementations of

the thickness constraint include the approximation of the tube as

a succession of suitably joined cylinders (Rawdon, 2000); this pro-

duces smoother curves at the same level of discretization, but re-

quires more computational time, and so has not been adopted here.

One is thus led to consider the Hamiltonian for the unconstrained

self-avoiding tube:

HðGÞ =
X

ijk

V3ðrijkÞ; (1)

where V3 is the three-body potential used to enforce tube thickness

(Gonzalez and Maddocks, 1999; Maritan et al., 2000; Marenduzzo

and Micheletti, 2003) and G is the configuration of the tube. The ar-

gument of V3 is the radius of the circle going through the triplet of

distinct points i, j, k, and V3 has the form

V3ðrÞ = 0 if r > D;
N otherwise

n
: (2)

In order to model a loop attached to an impenetrable sphere, tube

ends were modeled as hemispheres whose centers were con-

strained to lie on the surface of a sphere of radius R + D, and points

on the tube centerline were not allowed to lie within R + D (Figure 1B).
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In all cases, the potential we consider includes a term for bending

rigidity which reads

HbðGÞ = 2
Kb

a

X
i

cosðqiÞ; (3)

where qi is the angle between the ith and (i + 1)th discretization seg-

ment on the centerline, and a is the length of one such segment. A

typical discretization of an 850 nm tube involved 100 points on its

centerline.

Persistence Length

D and Kb determine persistence length, x, which obeys the following

approximate equation (Marenduzzo and Micheletti, 2003):

ax 2 1 = 2 log

0
BBB@1 2

a

bKb

+
a2

2D2

1

exp

�
bKba

2D2

�
2 1

1
CCCA; (4)

with b = 1/T (the Boltzmann constant is taken to be 1).

Two noteworthy limiting behaviors are obtained when either the

bending rigidity term or the thickness constraint is absent. When

the thickness constraint is absent and Kb >> a (continuum limit),

one obtains the traditional result: x = bKb. The other limit corre-

sponds to the persistence length of a discretized thick tube with

no bending rigidity, and yields:

ax 2 1 = 2 log

�
1 2

a2

4D2

�
: (5)

Therefore, even in the absence of an explicit bending penalty, the

restrictions imposed by D on the local radius of curvature are suffi-

cient to produce an effective persistence length.

For completeness, we add torsional rigidity, Kt, to the model,

x =
9D2

16bKt

2
41 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2

�
8bKt

3D

�2
s 3

5; (6)

which is valid for a/0 and Kt < Kt* (where Kt* = 3D/8b). If Kt > Kt*, an

oscillating phase is found in which the tube is locally arranged in

a helix.

Monte Carlo Simulation

The classical Metropolis-Monte Carlo procedure is used to generate

randomly a statistically relevant set of representative configurations

at temperature T (Sokal, 1996). Starting with an arbitrary configura-

tion (in our case, a circular tube attached to a sphere), a new one is

created randomly, and the difference (DE) between the two energies

computed. The new configuration is accepted with a probability de-

pending on DE, according to the Metropolis test (Sokal, 1996). This

procedure is then repeated (typically around 50 million Monte Carlo

moves were performed to calculate the binding probability for a sin-

gle position on the loop).

The new configuration is generated with the crankshaft move

(Sokal, 1996). A segment of the loop is selected at random, and ro-

tated through a randomly chosen angle (typically from 2p/6 to p/6).

This is the only move that allows the loop constraint to be preserved

during Monte Carlo dynamics. If only local crankshaft moves are

chosen, the tube remains unknotted; if global moves (i.e., involving

rotation of the chain between distant points) are allowed, it is known

that knots can form. We verified that looping probabilities were the

same, within the error, in both cases.

In order to simulate the rare occupation of a binding zone by

a point on the tube, we slightly modified the algorithm of Podtelezh-

nikov and Vologodskii (2000) to fit our case. We considered several

concentric spheres centered around the binding site with increasing

radius, Ri, with i = 1, ., M (M is the number of spheres used in the

calculation). The largest sphere radius, RM, is chosen large enough

that the point is always in the sphere during the whole simulation. Al-

ternatively, we could have used a parallel tempering algorithm with

a fictitious potential attracting the point to the binding site (data

not shown).

After data collection, we evaluated the correlation length and cal-

culated the statistical error accordingly. We calculated the binding

probability of several points along the loop, each characterized by
its fractional distance, s. Typically, about 30 positions were con-

sidered for each loop. In order to get the accuracy shown in Figure 3

(within 5%), simulations took around 80 hr of CPU time on an

a computer.

Parameters Used during Modeling

Parameters used for Figure 2 were as follows: for Figure 2A, dimen-

sions (nm) were L = 850, 2D = 20, x = 40, bending constant = 0, a = 8.5,

R = 37.5; for Figure 2B, dimensions (nm) were L = 425, 850, 1700, and

2550 (other values as in A); for Figure 2C, the radius of gyration, Rg, of

a polymer consisting of N beads sitting at positions f~rigi = 1;.;N , and

whose center of mass is in~rcm, is calculated via the formula:

Rg =

*PN
i = 1

ð~ri 2~rcmÞ2

N

+1=2

; (7)

where the brackets denote the ensemble average over all chain con-

formations. The hull radius considers the system formed by the

sphere plus the chain, and is defined as the radius of the minimal

sphere that encloses all the chain plus sphere and is centered at

the sphere origin.

Parameters used for Figures 3 and 4 were generally as in Figure 2A.

Binding zones (r = 8.5 nm) are placed (see Figure 1B) at positions 1

(Figures 3A–3D and 4A) or 1–3 (Figure 4B). Zone 1 is placed symmet-

rically between tethering points with b1 = b2 = 51.36 nm (where b1 is

distance along the surface of a gray sphere with radius R + D from p1

on the left arm to the center of the zone, and b2 is the corresponding

value from p1 on the right arm). For zone 2, b1 = 38.29 nm and b2 =

64.45 nm. For zone 3, b1 = 24.65 nm and b2 = 78.08 nm. In Figure

3B, ratios of maximum:minimum probabilities found were 6.97,

9.07, 9.42, 18.62, and 29.37 for L = 255, 340, 425, 850, and 1275 nm,

respectively. Both maximum and minimum probabilities decrease

as the contour length increases. Moreover, moving the tethering

points closer together decreases the difference in peak height (see

Figure 6 for the case of an infinitesimally thin chain; in particular,

compare Figures 6A and 6B). In Figure 3C, Kb/a was set at 0, 0,

5.485, and 5.55 for tubes with diameters of 30, 20, 11, and 2.5 nm,

respectively. Maximum:minimum probabilities found were 20.87,

18.62, 17.23, and 15.98 for tubes with diameters of 30, 20, 11, and

2.5 nm, respectively. In Figure 3D, the value of the persistence length

lies within 5% of that indicated. Kb/a was set at 0, 7, and 11 for x = 40,

70, and 100 nm, respectively. Maximum:minimum probabilities

found were 18.62, 48.23, and 88.47 for x = 40, 70, and 100 nm, re-

spectively. Note that the 100 nm curve has a bump just beyond

the peak, which cannot be seen clearly in Figure 3D at the scale

used. This bump is also seen with a worm-like chain at 3–4 times

the persistence length. For Figure 4A, b1 (which equals b2) was set

at 51.36, 43.85, and 41.94 nm for R = 37.5, 75, and 1000 nm, respec-

tively. Maximum:minimum probabilities found were 18.62, 44.46,

and 182.36 for R = 37.5, 75, and 1000 nm, respectively. For

Figure 4B, maximum:minimum probabilities found for the left- and

right-hand peaks were: for zone 1, 18.62 and 18.62; for zone 2,

72.66 and 7.31; for zone 3, 714.68 and 2.47.

Figure 6. Nonscaled Binding Probabilities for a Symmetric Loop of

Freely Jointed Chains with Different Contour Lengths Tethered to

a Sphere of Infinite Radius

(A) Case (1):~r =~r 0 = ~b The curves are almost independent of contour

length close to the tethering points (N = 50–500).

(B) Case (2): ~r s~r 0 s ~b (see text for exact values). The colder re-

gions in the loop (i.e., away from the peak) show a strong depen-

dence on contour length (N = 50–500).
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A loop attached to a sphere is modeled here as a freely jointed chain;

the loop is infinitesimally thin and adopts a random walk. This ap-

proximation renders the model analytically tractable, and enables

us to isolate the effects of self-avoidance that are included in our

model. We consider the special case of a semiflexible fiber (also

known as a worm-like chain) in which no bending rigidity is associ-

ated with fiber conformation (see, for example, Dekker et al., 2002). If

sphere radius is much smaller than the polymer (fiber) gyration ra-

dius, Rg, the probability of having an infinitesimally thin random

walk joining two attachment points in three dimensional space,

which we call, respectively, ~r = ðx; y; zÞ and ~r 0 = ðx0; y0; z0Þ, is given

by (Hughes, 1995):

Pð~r; r 0; NÞ =

exp

�
2 3j~r 2~r 0 j2

2Nb2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pNb2=3

p� �3
; (8)

where b is the Kuhn (statistical segment) length and N is the number

of Kuhn lengths making up the contour length of the fiber. We also

introduce a binding site at position ~b = ðxb; yb; zbÞ.
Changing Sphere Radius

If the sphere radius, R, is much smaller than the radius of gyration

(Rg f Nj0.6b), we find the binding probability (the probability that

the point of coordinate s = nb, with 1 < n < N, along the loop attaching
~r to~r 0, sits at the binding site ~b) is:

Pðn; ~b; N;R / 0Þ =
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pnb2=3
p� �3

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p
�
N 2 n

�
b2=3

q� �3

f
1

n3=2ðN 2 nÞ3=2
:

(9)

This simplification occurs because the sphere is very small, so

that all points must be close together and~r z~r 0 z~b. Note the prob-

ability of a point in the loop occupying the binding zone (the looping

probability) has the general shape:

P f
1

ncðN 2 nÞc
; (10)

where c is 1.5 in a three-dimensional random walk.

Equation (9) is only valid if sphere radius is small in comparison

with the gyration radius. For a finite sphere, one should solve the dif-

fusion equation (random walk) with impenetrable boundaries on

a sphere. For our purpose, it is easier to consider the case of a sphere

of infinite radius (i.e., a plane), which, without loss of generality, we

take to be the plane z = 0. Physically, this calculation should well ap-

proximate the case where the gyration radius is now much smaller

than the sphere radius. In this case, the random walk cannot go be-

low the plane z = 0 and the binding probability is (following Hughes,

1995, we take z = z0 = zb = b):

Pðn; ~b; N;R / NÞ f
ð1 2 expð2 6=nÞÞ

ðnÞ3=2
ð1 2 expð2 6=ðN 2 nÞÞÞ

ðN 2 nÞ3=2

� exp

 
2 3j~r 2 ~bj2

2nb2

!
exp

 
2 3j~r 0 2 ~bj2

2ðN 2 nÞb2

!
:

(11)

In order to compare with Equation (9), it is useful to set~r =~r 0 = ~b, in

which case we obtain:

Pðn; ~b; N;R / NÞ f
ð1 2 expð2 6=nÞÞ

ðnÞ3=2
ð1 2 expð2 6=ðN 2 nÞÞÞ

ðN 2 nÞ3=2
:

(12)

For very large n and N 2 n (close to the center of the loop), this bind-

ing probability is given by Equation (10), with c = 2.5. In the case of

a plane, this means that small loops are more favored relative to

long loops (compared with the case of the small sphere, in which

c = 1.5).

In Figure 5A, we compare the probability, p(x), that a point x on the

loop occupies a binding zone—which is symmetrically placed

between the tethering points (for ~r =~r0 = ~b)—for a plane and a very
small sphere; trends are similar to those found with the self-avoiding

tube (Figure 4B) (values for the binding probabilities are normalized

relative to that found for the center of the loop [p(50)]).

Changing position of binding zone

Figure 5B illustrates how the binding probabilities for~r s~r0 s ~b and

a plane (see Equation [11]) change with location of the binding zone.

Specifically we took ~r = ð0; 0;bÞ, ~r 0 = ð6b; 0;bÞ, and varied ~b along

the line joining ~r and ~r 0. The binding probability at the exact center

of the loop is unaffected by the position of the binding zone, while

the peaks are strongly affected. The peak relative to the tethering

point closer to the binding zone is sensibly enhanced with respect

to the other, even for a mild asymmetry in binding zone position.

This is to be contrasted to the behavior found for the self-avoiding

loop (see main text and Figure 4B), where the peak relative to the

tethering point closest to the binding zone does become larger as

the binding zone becomes closer (as expected); however, the mag-

nitude of this effect is enhanced with the self-avoiding loop. This

trend is reversed away from the peak, and the binding probability

becomes smaller, for asymmetrically positioned binding zones

and self-avoiding loops. We ascribe this surprising effect to the

fact that, away from the peak, the fiber needs to loop between teth-

ering and binding zone, and self-avoidance of the fiber hinders bind-

ing, disallowing a large number of ‘‘bound’’ conformations. It thus

appears that displacing the binding zone can be a way of re-adjust-

ing the absolute binding probabilities of different points along the

loop in a nontrivial way.

Changing Contour Length Of The Loop

Figure 6 illustrates how the binding probability that a point at posi-

tion x on the chain (for the case of a plane) changes with the contour

length of the loop, where N is varied from 50 to 500). Tethering points

are as in Figure 5, and binding zones at ~r =~r 0 = ~b and ~b = ð3b; 0;bÞ
are shown in Figures 5A and 5B, respectively. It can be seen that

the scaling near the peaks deteriorates if the distance between the

two tethering points increases.
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