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Langevin dynamics is employed to study the looping kinetics of self-avoiding polymers both in ideal
and crowded solutions. A rich kinetics results from the competition of two crowding-induced effects: the
depletion attraction and the enhanced viscous friction. For short chains, the enhanced friction slows down
looping, while for longer chains, the depletion attraction renders it more frequent and persistent. We
discuss the possible relevance of the findings for chromatin looping in living cells.
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The kinetics and thermodynamics of the folding of a
flexible polymeric chain into a loop are central issues in
polymer physics [1–4]. Renewed interest in this classic
problem has been fueled by the introduction of novel
manipulation techniques [5] that provide unprecedented
insight into the mechanics and flexibility of various bio-
polymers. In particular, it has been shown that, in the cell
nucleus, DNA regions separated by several �m’s on the
genetic map can nevertheless be in molecular contact [5].
Is such looping generated by active mechanisms (e.g.,
molecular motors) or merely by passive thermodynamic
mechanisms (e.g., diffusion)? Some light can be shed on
these issues by comparing experimental observations with
the statistics and dynamics of looping predicted by general
polymer models. The systematic application of this strat-
egy has so far been hindered by the dependence of cycli-
zation dynamics on many time scales even for the simplest
phantom polymer models [6].

Here, we go beyond the treatment of phantom chains and
focus on the impact of steric effects. We not only consider
the polymer self-avoidance [1,7] but also incorporate ex-
cluded volume interactions of the chain with a surrounding
crowded environment, treated as a collection of small
monodisperse globular particles (microspheres) which in-
duce an entropic attraction on larger objects in solution [8].
To date, the investigation of this intriguing depletion effect
has been mainly studied in polydispersed colloidal solu-
tions [8,9]. Understanding how crowding affects the be-
havior of a single self-avoiding polymer thus represents a
novel and important topic in macromolecular physics. It
also has immediate implications in cell and systems biol-
ogy, as cells are so crowded with globular proteins and
RNAs [10–13]. We show that crowding affects the occur-
rence and persistence of loops in self-avoiding polymers in
diverse ways, according to the length of the polymer chain
and the size of the constitutive monomers. Besides uncov-
ering new physics, our results may be relevant to the
understanding of chromatin looping in vivo. Specifically,
we will discuss whether and to what extent the depletion
attraction may explain existing observations in cell biology

that active polymerases, attached to chromatin, cluster into
supramolecular ‘‘factories’’ of up to �m size during tran-
scription and replication [13].

A traditional string-and-beads model will be used to
describe polymer chains. We consider two simple cases:
a plain self-avoiding string of N equally-sized spherical
beads of radii Ri�1;...;N � 12:5 nm, and one with larger
beads at the ends. This sphere size was chosen to relate
our polymer to an eukaryotic chromatin fiber, whose ef-
fective diameter and persistence length are both �25 nm
[14]. The case of larger end beads is instead motivated by
the study of chromatin loops with an attached genome-
grabbing machinery (a large transcription or a replication
complex which locally increases the effective fiber diame-
ter [13]). The potential energy, when the centers of beads i
and j are at a distance di;j, is

 Vc � �1

X
i<j

e�a�di;j�d
0
ij� � �2

X
i

ln
�

1�
�
di;i�1

1:5d0
i;i�1

�
2
�

(1)

where �1 and �2 are, respectively, 0.24 and 70 units of
thermal energy, �BT, a � 4 nm�1, and d0

i;j � Ri � Rj is
the contact distance of beads i. The first term in Eqn. (1)
enforces the hard-core repulsion for contacting pairs, while
the second provides an attraction between consecutive
beads on the chain. Interplay between the two terms pro-
duces a self-avoiding finitely extensible nonlinear elastic
(FENE) chain [15] where, at temperature T � 300 K, the
distance between consecutive beads fluctuates by about
0.5 nm around 25 nm. The microspheres have radius r �
2:5 nm and occupy a fraction � � 0:15 of the total avail-
able volume. These values conservatively reflect the
crowding of the cellular environment mostly due to RNA
and proteins [13]. Because the value of � considered here
is moderate [see Fig. 1(a)], we can resort to the approxi-
mate Asakura-Oosawa (AO) treatment [8], which does not
require simulating explicitly the dynamics of micro-
spheres. More precisely, in addition to the term of
Eqn. (1), the polymer is subject to the following effective
interaction potential:
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where ~dij � 2r� d0
i;j � dij, �ij � jRi � Rjj, and the step

function � ensures that the AO depletion interaction van-
ishes at distances>d0 � 2r [8]. As r is sufficiently smaller
than the radii of the chain beads, it is legitimate to dis-
regard in (2) three- and many-body interactions. The evo-
lution of the system, carried out for various N, sizes of end
spheres, and values of �, was described by overdamped
Langevin dynamics

 �i _x�i � �@�Vc � VAO�=@x�i � �
�
i �t�; (3)

where � runs over the Cartesian components, ~xi is the
position of the ith bead, and the stochastic white noise
term obeys the fluctuation-dissipation condition: h�i � 0,
h��i �t��

�
j �t
0�i � 2	�;�	i;j	�t; t0�kBT�i. The friction term

�i was obtained from the Stokes-Einstein [1] relationship:
�i � 6
��1� 2:5��Ri where � � 5 cP [13]. The
Langevin equation was integrated numerically by means
of a predictor-corrector scheme [16] and a time step of
15 ps. The viability of Eqn. (3) was ascertained by a
preliminary successful comparison of various dynamic
and equilibrium properties with those produced by under-
damped dynamics (with masses deduced from typical den-
sities of biopolymers, � � 1:35 g=cm3 [17]).

The dynamical evolution was followed starting from
randomized non self-intersecting configurations of chains
with 3 	 N 	 30 beads. When investigating how looping
dynamics is affected by the size of the contacting spheres,
we set N � 10 and varied the radius of the end spheres,
R1 � RN , within 12.5 and 43.75 nm. The formation of
loops was detected by monitoring the end-to-end distance,
d1;N , and comparing it to the range of the depletion attrac-
tion, d1;N < �d

0
1;N � 2r�. To have a well-defined compari-

son term, the same criterion for loop formation was
adopted in the absence of crowding effects or agents (i.e.,
� � 0). Typical evolutions of the end-to-end distance are
illustrated in Fig. 1(b). The trajectories were analyzed to
highlight how depletion interactions affect the looping
kinetics and the chain’s equilibrium structural properties.
For the latter issue several geometrical descriptors were
considered: the radius of gyration, virial coefficients, and
the distribution of local chiralities i � ~ui�2;i�3 
 � ~ui;i�1 ^
~ui�1;i�2�, ~ui;i�1 being the normalized bond vector joining
residues i and i� 1. For looped configurations, we also
calculated the writhe and crossing number, averaged over
hundreds of randomly oriented two-dimensional projec-
tions [18]. Concerning the looping dynamics, we instead
characterize the evolution of the system in terms of the
mean-first looping time (MFLT) and the mean-first unloop-
ing time (MFUT), which we establish through the follow-
ing novel procedure apt for numerical implementation. For
very long, and hence thermalized, trajectories the MFLT is
obtainable by picking at random unlooped conformations
and measuring the time to the first looping event.
Configurations in a specific ‘‘unlooped time interval’’ of
duration �u will be picked with weight equal to �u, and
their average first looping time will be �u=2. The MFLT
can thus be expressed in terms of the average duration of
unlooping intervals and its second moment: MFLT � 1

2 �
h�2
ui
h�ui

. An analogous formula holds for the MFUT. The
average values of MFUT and MFLT (we have verified
that the first two moments of looping and unlooping inter-
vals are finite) and their uncertainties were calculated over
10 independent trajectories having maximum duration
ranging from 0.1 s for N � 3 to 10 s for N � 30.

We first discuss the structural differences of the gener-
ated configurations. The short-range depletion attraction
produces a reduction of the effective size of the polymer.
For the largest N considered, where most conformations
are unlooped, the radius of gyration decreases by 10%
when � goes from 0 to 0.15. The depletion attraction
also impacts on the chain structural organization. Indeed,
the geometrical complexity of looped chains is enhanced
by crowding and the average crossing number increases
with � [Fig. 1(c)]. This is akin to what occurs in random
rings upon compactification [18]. At variance with this
case, the development of a striking trimodal character of
the chirality distribution, indicates the emergence of a
peculiar structural organization [see Fig. 1(d)]. Though
the chiral biases are local, and hence do not lead to long-
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FIG. 1 (color online). (a) Sketch of a chain of N � 8 beads
(end spheres highlighted) of radius R � 12:5 nm. Microspheres
(r � 2:5 nm and � � 0:15) within 7.5 nm of the chain surface
are shown. (b) Time evolution of the end-to-end distance, d1;N , in
chains of N � 5 beads, subject to the effective depletion poten-
tial accounting for the presence (� � 0:15) and absence (� � 0)
of the microspheres. Looping occurs when d1;N < 2�R� r� �
30 nm (shaded area). Probability distribution of (c) average
crossing number and (d) chirality for � � 0 and � � 0:15.
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range structural order, they provide qualitative support to
the recent suggestion of Snir and Kamien that depletion
effects may be sufficient to drive the formation of optimal
helices in thick biopolymers [11,19].

We next turn to the analysis of the looping kinetics and
discuss the behavior of the MFUT. In the presence of
microspheres, the two contacting ends are subject to the
depletion attraction, and it may be anticipated that the
MFUT is larger than for � � 0. This expectation, qualita-
tively perceivable from Fig. 1(b), is confirmed and quanti-
fied in Fig. 2(a) which portrays a parallel trend of
unlooping time as a function of N for � � 0 and � �
0:15. Moderate crowding is enough to increase the time the
ends spend together (forming a loop) by a factor of 3.

The behavior of the MFLT [Fig. 2(c) and 2(d)] is more
intriguing and harder to anticipate, owing to two opposing
tendencies. On one hand, as we saw earlier, the depletion
attraction reduces the effective polymer size and hence
favors looping. On the other, crowding augments the ef-
fective viscosity of the medium, thereby slowing the dif-
fusive encounter of terminal beads. More precisely, the
Stokes-Einstein formula gives a 38% increase of friction
coefficient when � � 0:15 compared to � � 0. The re-
sulting balance between the two opposing effects can be
established by considering the asymptotic expression for
relaxation times in Rouse chains with excluded volume.
The slowest relaxation time in such chains (assimilated to
the MFLT [6,7]) increases as �b2N2��1, where � � 0:6 is
the scaling exponent for self-avoiding polymers and b is
the effective size of the chain monomers estimated by
calculating the second virial coefficient accounting for
the depletion attraction of of Eqn. (2) [1]. Indeed, the

data collected within the explored range of N appear well
compatible with this asymptotic relationship [see
Fig. 2(c)]. The Rouse scaling formula can hence be used
to quantify how the crowding-induced changes in � and b
ultimately affect the MFLT for large N. For the specific
case considered here,� � 0:15, one finds that the MFLT is
decreased by about 17% compared to the� � 0 case. This
crude asymptotic estimate is in fair agreement with the
simulation results for N � 15–30, which indicates that,
when � � 0:15, crowding decreases the MFLT by 10%
or more. It is interesting to consider, within the previous
approximate analysis, how the MFLT depends on �. This
information, obtained from the known functional depen-
dence on � of the friction and second virial coefficients, is
shown in Fig. 3 which portrays an intriguing nonmonotonic
dependence: for small crowding �< 0:1, the diffusive
slowing dominates, while larger � facilitate looping via
depletion-induced crumpling of the chain.

We finally discuss the dependence of looping on the size
of the terminal beads. We considered chains of N � 10
beads where R1 � RN were varied between 12.5 and
43.75 nm. We found that the increase in end spheres size
had minor effect on the MFLT which, for � � 0:15,
changed by less than 10% over the explored range of
terminal radii. The near constancy of the MFLT is note-
worthy since the change of R1 � RN from 12.5 to 43.75 nm
implies a two-fold increase of probability that terminal
spheres contact internal ones. In contrast, the MFUT is
greatly affected by changes in terminal radii. As illustrated
in Fig. 2(b) for � � 0:15, it increases approximately ex-
ponentially as a function of R1 and RN . This behavior
would be expected if the terminal bead exited the depletion
well (whose depth increases linearly with R1 � RN) ac-
cording to simple Arrhenius kinetics. However, the in-
crease in MFUT also reflects the decreased diffusivity of
terminal beads as a result of the linear increase in R of the
friction coefficient, �. This second effect, dominated by the
former in the presence of crowding, is readily visible in the
curve pertaining to � � 0 in Fig. 2(b). The dotted line
represents a fit to the 6 data points with a linear relationship
in R1 � RN (with relative 2 equal to 1.5), which would be
appropriate if the diffusion coefficient of the terminal
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FIG. 2. Mean-first unlooping time as a function of (a) chain
length and (b) radius of terminal spheres. The curved lines in
(b) correspond to exponential and linear fits of the data.
(c) Mean-first looping time as a function of chain length (points
and dashed line). The asymptotic law for relaxation time in
Rouse chains, �R / N2��1, is shown for comparison. (d) Ratio
between MFLT in the presence (� � 0:15) and absence (� � 0)
of crowding agents. The typical error is 5%.
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spheres were the only factor slowing unlooping. By carry-
ing out simulations for selected values of �, it was found
that increasing � enhances the magnitude of these effects.
For example, with� � 0:3, which may also be appropriate
for crowding in nucleoplasm [13], the MFLT is �3 times
smaller and the MFUT (with R1 � RN � 25 nm)�9 times
longer than with � � 0:15.

We now discuss the possible biological implications of
our results. As mentioned previously, a large number of
active DNA (and RNA) polymerases can attach to specific
segments of a chromatin fiber, thus increasing its local
thickness. Experimental observations have shown that
these scattered groups of polymerases eventually cluster
into replication (or transcription) factories, thus looping
the intervening genome. In the case of replication factories
in eukaryotes, these structures contain �10 or more poly-
merases and range in size from�100 nm up to��m [13].
Is there a simple physical mechanism leading to their
establishment? Our study suggests that the formation and
persistence of these loops can be aided by cellular crowd-
ing. First, using a conservative estimate of � � 0:15, we
find that the depletion self-interaction of the fiber thermo-
dynamically facilitates looping (see, e.g., Fig. 1). For
example, analysis of end-to-end distances in equilibrium
shows that bridging the two ends of a 750-nm fiber, which
would contain 75 kilobases of DNA [14], costs more than 8
kBT in the absence of crowding agents, but less than 7 kBT
in their presence. We find crowding diminishes the looping
cost by 1–2 kBT for all lengths simulated. All, or most, of
this looping cost may be overcome by the extra depletion
attraction between the thicker ends of the loop, to which
the replication machinery is attached, consistently with
recent theoretical predictions [13]. Second, the results of
Fig. 2(d) demonstrate that crowding can also aid looping
dynamically by facilitating the diffusive encounter of the
ends. This intriguing result is supported by theoretical
arguments summarized in Fig. 3, which suggest the effect
is robust. Furthermore, crowding stabilizes loops once the
two ends have met. The fact that the MFUT has an ap-
proximately exponential dependence on the height of the
depletion well [Fig. 2(b)] underscores the role that crowd-
ing has for the formation of replication or transcription
factories. Via Eqn. (2), the unlooping time of, e.g., two
transcription complexes of radius R � 40 nm with � �
0:3 is estimated to easily exceed 0.1 s—a macroscopic
time scale comparable to the experimentally measured
persistence time of factories. In living cells the lifetime
of such aggregates is probably longer because, besides
other physical-chemical factors, many complexes may
come together (rather than the two considered here), and
interactions of one large bead with two or more others
cooperatively increases the stabilization due to the deple-
tion attraction [13].

In conclusion, we have considered various kinetic and
thermodynamic aspects of polymer looping in a crowded
medium. The process of loop formation is controlled by

two opposing effects. On one hand, looping is entropically
aided in crowded media by the depletion effect. On the
other, the enhanced friction of the medium hinders the dif-
fusive encounter of the chain ends. The balance of the two
effects is found to depend both on the length of the polymer
chain and on the size of the contacting ends. Specific model
parameters have been used to show quantitatively that
crowding-enhanced looping formation or persistence may
be actually exploited in living cells to promote the contact
of actively replicated/transcribed chromatin regions as ob-
served in recent experiments [13]. The approach outlined
here demonstrates the viability of computational and ana-
lytical approaches to investigate the novel and stimulating
problem of crowding effects on a single polymer. It would
be interesting to confront theory and experiments on loop-
ing and unlooping times obtained from single molecules
experiments with and without crowding agents.
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