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ABSTRACT DNA and RNA polymerases active on bacterial and human genomes in the crowded environment of a cell are
modeled as beads spaced along a string. Aggregation of the large polymerizing complexes increases the entropy of the system
through an increase in entropy of the many small crowding molecules; this occurs despite the entropic costs of looping the
intervening DNA. Results of a quantitative cost/benefit analysis are consistent with observations that active polymerases cluster
into replication and transcription ‘‘factories’’ in both pro- and eukaryotes. We conclude that the second law of thermodynamics
acts through nonspecific entropic forces between engaged polymerases to drive the self-organization of genomes into loops
containing several thousands (and sometimes millions) of basepairs.

INTRODUCTION

Specific interactions between monomers (e.g., H-bonds) are

known to mediate biomolecular assembly. Paradoxically,

nonspecific entropic forces can also drive self-assembly.

Thus, the environment within a living cell is crowded, with

20–30% of the volume occupied by macromolecules (1,2);

then, aggregation of the largest particles can lower the free

energy of the system through an increase in entropy of the

many smaller particles (3). In Fig. 1 A, the centers of mass of

the small spheres can access the yellow volume, but not the

gray volumes surrounding each large sphere or abutting the

perimeter wall. When one large sphere approaches another,

these excluded volumes overlap (Fig. 1 A, overlap volume 1)
and this allows the small spheres to access a greater volume.

The resulting increase in entropy of the many small spheres

generates what has been called a ‘‘depletion attraction’’

between the large ones. The attractive energy at contact is

;3/2(D/d)n kBT, where D and d are the diameters of the

large and small spheres, n is the volume fraction of the small

spheres, kB is the Boltzmann constant, and T is the absolute

temperature (3). The attraction falls to zero at a distance d
between the two large spheres. A related attraction drives

a large sphere to the surrounding wall (Fig. 1 A, overlap
volume 2). Enough is known about these attractions that they
are being used to model the formation of helices in proteins

(4) and position particles within man-made nanostructures

(5). The free-energy gains can be several kBT, which can be

compared with the energy associated with a single van der

Waals interaction (;0.1 kBT), a single H-bond (;1.5 kBT, or
;1 kcal/mol), and a covalent bond (10–100 kBT).

Here we describe how this depletion attraction might drive

genome organization. (For various models of genome struc-

ture, see Manuelidis (6), Cook (7), Sachs et al. (8), Marshall

et al. (9), Munkel and Langowski (10), Belmont (11),

Ostashevsky (12), and Kleckner et al. (13).) When DNA is

replicated or transcribed, the resulting polymerizing com-

plexes are large enough relative to the crowding agents that

they will tend to aggregate. We consider a range of different

complexes in bacteria and man, and in almost every case,

the depletion attraction is sufficient to explain the observed

organization—the clustering of active DNA and RNA poly-

merases into ‘‘factories’’ to form loops that may be several

millions of basepairs in length (14–17).

METHODS

The depletion attraction

We first review the original formulation of the entropic depletion attraction.

Consider two hard (chemically noninteracting) spheres of diameter D

dispersed in a solution of hard spheres of diameter d (usually the case d, D
is considered). The center of mass of the small spheres is excluded from

a shell surrounding the large spheres (Fig. 1 A). As one large sphere

approaches the other, these excluded volumes overlap (Fig. 1 A, overlap

volume 1) and the small spheres can access a greater volume; there is a net

free-energy gain due to the increase in the entropy of the small spheres. The

minimum of this potential is attained when the two large spheres are in

contact, and is given by Asakura and Oosawa’s formula (3)

DFgain ¼ nkBT 11
3D

2d

� �
; (1)

where n is the volume fraction of small spheres, kB the Boltzmann constant,

and T the absolute temperature. Eq. 1 is an approximation and applies to

values of n up to;30%; it then becomes less reliable until DF changes sign.

If the two spheres are moved apart, the attraction declines progressively as

the overlap volume falls. For values of D and d used here, the average

attraction in the range of full to zero overlap is approximately half that given

by Eq. 1.

We now generalize to different and arbitrary shapes. The scale of the free

energy gain depends significantly on the shape of the large objects. For
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example, Eq. 1 can be generalized to two different large spheres (3) with

diameters D1 and D2, where D1 . D2:

DFgain ¼ nkBT 11
3D1D2

dðD1 1D2Þ

� �
: (2)

A special case is that of a wall, in which D1 ¼ N; the overlap volume

is larger than that with another sphere (Fig. 1 A, compare overlap volumes

1 and 2), so the resulting attraction is larger and given by

DFgain ¼ nkBT 11
3D2

d

� �
: (3)

DFgain is even larger with a convex wall like a bacterial cell membrane (18).

Most biological interactions involve nonspherical objects like ligands

that fit snugly into irregularly shaped receptors. In the most general case,

theory (3) predicts that the free-energy gain for irregular objects is

DFgain ¼
6

p
nkBT

Voverlap

d
3 ; (4)

where Voverlap is the increase in volume available to the small objects. We

approximate proteins and RNA here as spheres as they usually fold into

globular structures.

‘‘Soft’’ beads

Most situations we discuss involve interactions between polymerases bound

to DNA, and individual enzymes are modeled as hard spheres. However,

we also discuss interactions between two clusters of polymerases where

each cluster contains many enzymes (e.g., DNA polymerases in replication

factories). In such cases, the biology suggests that individual enzymes

intermingle when the two clusters come into contact; we call these clusters

‘‘soft,’’ and allow individual hard spheres in one cluster to intermingle on

contact with their counterparts in the other. The result is one large cluster

with the combined volume of the two original ones. This problem is

complicated by the large number of possible arrangements of individual

spheres within a cluster, and of one cluster relative to the other. Therefore,

we restrict analysis to simple limiting cases. At the coarsest level, each

cluster can be treated as one macrosphere with volume (or surface) cor-

responding to the total of all individual spheres. This approach is used for

the ‘‘hard’’ gains in Fig. 2, rows 9–13. However, for Fig. 2, rows 3, 4, and 14

(hard gains), all polymerases are attached to DNA and a better model is

obtained by considering the cluster of N polymerases as a linear (straight)

succession of N closely packed beads; then, the free energy gained by

putting two such clusters in longitudinal contact is N times the gain for two

FIGURE 1 The depletion attraction. (A) The schematic shows a suspen-

sion of large and small spheres in a box. The shaded regions around the four

large spheres are excluded to the center of masses of the small spheres.

When one large sphere contacts another, their excluded volumes overlap

(overlap volume 1) to increase the volume available to the small spheres

(increasing their entropy); then, aggregation of the large spheres paradox-

ically increases the entropy of the system. An analogous effect is found

when a large sphere contacts the wall (2). The attraction can also be viewed

as an osmotic phenomenon; small spheres cannot enter excluded volumes,

and a force equivalent to their osmotic pressure acts on each side of the two

touching large spheres to force them together (or on one side of the large

sphere at the wall to force it to the wall). (B) Spheres bound to each end of

a string will also tend to aggregate or associate with the wall, to loop the

connecting string (which has an associated entropic cost). The type of

overlap involved is indicated.

FIGURE 2 Energy gains (DFgain from the depletion attraction) and losses

(DFloss due to looping). DFgain is the maximum obtained for hard spheres or

soft clusters at closest contact; n¼ 0.2, and d¼ 5 nm (except in row 2, where

d ¼ 1 nm). Cartoons illustrate the structures analyzed: blue, DNA; red,

RNA; green, DNA polymerases; pink, RNA polymerases (pols). See

Methods plus Results and Discussion for details.
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individual beads. This holds if the polymer is very stiff (i.e., its persistence

length is larger than N times the diameter of a polymerase). If, on the other

hand, the polymer is flexible, so that the cluster diameter is much larger than

the persistence length (or if there are many individual spheres in one cluster),

we allow individual spheres in one cluster to intermingle freely with their

counterparts in the other (with the gain as in Eq. 5, below). This approach is

used for the soft gains in Fig. 2, rows 3 and 9–14.

If the two clusters of large spheres (total diameter of each cluster ¼ D)
are soft and can fuse to give one larger sphere of size 21/3D (i.e., with

conservation of volume), the entropic gain is proportional to the gain in

volume excluded to the small macromolecules. This gain is given by

DFgain ¼ nkBT
2ðD1 dÞ3 � ð21=3

D1 dÞ3

d3

" #
: (5)

If spheres in the two clusters are allowed to intermingle, the overlap

volume is considerable and the entropic gain now depends on D2/d2 (Eq. 5);

this compares with D/d for hard spheres (Eq. 1).

Two beads on a string

We now come to the central case of interest here (Fig. 1 B), which has not yet

been analyzed: two large spheres threaded on a connecting (genomic) string.

We assume the tethering string can be modeled as a polymer in a good

solvent (19). Whether there is a net attraction between spheres depends

on the balance between DFgain and DFloss, where DFgain is the entropic

attraction between spheres (given by Eq. 1 or 5 for hard or soft spheres,

respectively) and DFloss is the entropic penalty that must be paid to loop the

string. This loss arises due to the tethering constraint, and is well ap-

proximated by (20,21):

DFloss ¼ ckBT log
l

LK

� �
1DFr0: (6)

The constant c has been the subject of debate between theoretical

physicists (see Hanke and Metzler (20) and references therein) and depends

on loop conformation; it typically increases with string density from 1.5 for

an ideal random walk or freely jointed chain, through 2.2 for the ‘‘four-

legged’’ loop as in Fig. 1 B (22), to higher values if the density is very high

(below). l is loop length, and LK is the (statistical) Kuhn length of the string.

DFr0 is a constant that is independent of loop length; it is physically related

to the dimensions of the overlap volume (and so to the diameter of the small

spheres), and to the range r0 of (short) distances between the two beads that

we consider sufficient to form a loop. DFr0 for self-avoiding walks is

generally estimated by simulation and can be significant in the cases we

consider. Note that we consider the looping costs of both a freely jointed

chain (in bacteria) and a self-avoiding loop (in eukaryotes); costs for the

latter have not been determined previously.

The entropic attractions between two free or tethered spheres differ

qualitatively in an important respect. The most probable state for two

untethered spheres is to lie apart as they diffuse in three-dimensional space,

and the fraction of spheres that do pair—fpairing—can be found using the

van’t Hoff relation (neglecting three and higher body interactions):

fpairing ¼
11 2KeqCb �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4KeqCb 1 1

p
2KCb

; (7)

where Keq is the equilibrium constant of the reaction and Cb is the con-

centration of unbound large spheres. In contrast, two spheres threaded on a

string can often be together if the interaction is large enough. Treating the

thread as a freely jointed chain, we can calculate semianalytically the

(‘‘looping’’) probability of finding the two within the overlap volume (Fig.

3 A). This probability is found by weighing the probability of the two

spheres being at a distance r through the depletion attraction (3). Even if the

attractive interaction cannot bring the two spheres permanently together, it

can still ensure that the two pair for at least some finite time (tpairing, see

below). This qualitative distinction can lead to large quantitative differences.

For example, of the ;8000 molecules of RNA polymerase (diameter ;10

nm) in an Escherichia coli cell (volume ;0.8 mm3 (23)), we calculate (24)

that only 2% are paired (i.e., fpairing ¼ 0:02); this compares with the

essentially complete pairing of two sets of 70 threaded polymerases (Results

and Discussion).

Examples

The E. coli genome is modeled as a freely jointed chain—a succession of

infinitely thin penetrable segments, each of length LK of 0.3 kbp (calculated

assuming a persistence length for B DNA of 50 nm (25)). The eukaryotic

chromatin fiber is modeled (26) as a self-avoiding tube (persistence length

40 nm or ;3.6 kbp, assuming a packing of 1 kbp/11 nm). Note that the

volume fraction, n, is known in bacteria but not in eukaryotes, whereas local

DNA structure is known in eukaryotes but not in prokaryotes. As zig-

zagging models have supplanted those involving 30-nm solenoids (27), tube

diameter is set at 20 nm in eukaryotes to reflect a wider zig-zagging fiber that

can interpenetrate to some extent.

We model pro- and eukaryotic genomes differently mainly because the

thickness/persistence length ratios are so different. In bacteria, there is no

evidence of proteins bound stably to DNA, and DNA diameter (;2.5 nm) is

FIGURE 3 Dependence of looping on attractive energy, chain length, and

sphere diameter. Cartoons illustrate forms existing under different condi-

tions. See Methods for details. (A) Probability of forming loops at different

attractive energies (in kBT). Structures modeled are two large beads (D ¼
10 nm) connected by freely-jointed chains of different lengths; a loop is

considered to exist if sphere surfaces lie within 5 nm. Sharp transitions

between unbound (unlooped) and bound (looped) states occur within ;5

kBT. (B) Effects of minimum diameter (D) of large spheres and length of

freely-jointed chain on looping; lines mark transitions between unlooped

and looped forms for hard and soft spheres.
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smaller than persistence length (;50 nm); therefore, it seems appropriate to

neglect thickness and use the analytically tractable freely jointed chain. In

eukaryotes, we know that DNA is folded first into nucleosomes and then into

higher-order structures; as a result, diameter (20 nm) is a significant fraction

of persistence length (40 nm) and it seems more appropriate to use the tube

model (which includes self-avoidance, but is less tractable analytically).

Self-avoidance is included by ensuring that all circles going through

any triplet of points taken along the tube center-line have radii larger than

half the tube thickness (26). Calculation of looping costs requires Monte

Carlo simulations, as existing theory does not enable us to compute DFr0

analytically. To calculate the looping probability, we adapt the method used

previously to determine the probability that a point on a loop attached to one

sphere might bind to a specified binding zone on the surface of that sphere

(26). Here, we have two beads attached to each end of a flexible tube. We fix

the position of the center of one bead, divide the surrounding volume into

concentric shells of increasing radii, and compute for each pair of contiguous

shells the conditional probability that the other end of the tube is found in the

inner of these two shells, given that it is constrained to lie within the outer of

the two shells.

In Fig. 2, values for DFloss in E. coli for equivalent structures tend to be

higher than those for man. This arises for two reasons. First, bacterial DNA

is less compact (above), so loops are longer (giving a higher entropic cost);

if it proves to be more condensed, values for DFloss will be smaller. Second,

the beads tend to have smaller diameters in bacteria, so values for

DFr0—which depend on the range of distances between the two beads

considered sufficient to form a loop—tend to be larger; they were 5.7 kBT in

Fig. 2, rows 3–5 and 7 (calculated assuming a depletion attraction in the

range 10–15 nm between sphere centers), 3.2 kBT, 3.5 kBT, and 3.5 kBT

(assuming a range of 43–48 nm, 37–42 nm, and 37–42 nm) in Fig. 2, rows 6,

8, and 9, respectively. In Fig. 2, rows 11–17, we assumed interaction in the

range between sphere centers of 30–35, 30–35, 75–80, 25–30, 25–30,

40–45, and 25–30 nm, respectively, and calculated the entropic loss via

Monte Carlo simulations (26).

For Fig. 2, rows 3 and 4, the distance between rrn operons is genome

length (i.e., 4.6 Mbp) divided by operon number (i.e., 7). In LB, there are

;70 polymerases per operon (23), and DFgain is calculated assuming either

that 70 closely packed impenetrable spheres lie in straight lines at each end

of a 650-kbp thread (for hard), or that each one of the 70 hard spheres at one

end can intermingle with any other sphere (for soft). These two extremes

correspond to very stiff and very flexible threads, respectively, and the real

situation is likely to lie in between. In contrast to other cases, here the gain

given by the soft cluster (which is proportional to the number of polymerases

exposed to the solvent on the surface) is smaller than that given by hard

polymerases. For Fig. 4 C, we consider the topology in Fig. 4 B, and

calculate the probabilities that different operons cluster together into f foci

(where f is between 1 and 22). To make the problem tractable, we assume the

following. 1), An observable focus corresponds to one operon (or more),

with each associated with 70 polymerases tagged with green fluorescent

protein (GFP) (note that 70% polymerases are engaged on rrn operons (23)).

2), Neighboring operons cluster first, the next nearest neighbor is then added

to the cluster, and so on. 3), We compute the separate probabilities of having

fi foci for the four arms in the network (i.e., two arms containing rrnC,

A,B,E,F,G,D and two with rrnC,A,B,E). Via the convolution of these

quantities, we can find the probabilities of the whole system having f foci. 4),

Operons are connected by a freely jointed chain (as DFr0 can be calculated

exactly). We also assume a not-further-specified interaction between active

operons, calculate the probability of observing f foci (with f¼ 0–6 (28)), and

adjust the interaction to fit the data. We have repeated the calculation

assuming that two operons must be in the same site to be detected as a focus

and found a slightly smaller value for the interaction (i.e., 13 kBT instead of

16.5 kBT). For Fig. 2, rows 5–8, average spacings between active

polymerases are from M. Bon, S. McGowan, and P. R. Cook (unpublished).

For Fig. 2, rows 5 and 7, a gain of 0.8 kBT is nevertheless sufficient to

increase the time spent together by 30%; the gain also doubles if transcripts

are included as 10-nm hard spheres. If we model each polymerase,

transcript, plus associated ribosomes as one 10-nm hard sphere (the poly-

merase) plus coplanar contacting hard spheres (diameter 21 nm) repre-

senting ribosomes, the gain increases by 1.46 kBT for each ribosome

(estimated by considering the configuration where the two planar clusters are

stacked in register so that equal-sized spheres are in contact).

For Fig. 2, row 9, we consider slowly growing cells with only two forks

(as in Fig. 4 A); the entropic cost of looping is given by

DFloss ¼ 3=2 kBT log
lðL� lÞ
2L� l

� �
; (8)

where l and L (expressed in Kuhn lengths) denote distance between forks

and total genome length, respectively. The cost in Eq. 8 is that to make one

loop, as joining the two forks only creates one extra loop. Eq. 8 is valid for

1 � l � L, and has been derived by first writing down the probability that

three distinct freely jointed chains (of length l, l, and L � 2l) have the same

initial and final point, which we call x~ and y~ respectively, and then by taking

the limit x~/y~ of this quantity.

For row 10, each fork is associated with a cluster of 25 hard spheres and is

attracted to the membrane. DFgain (hard) is calculated assuming that each

fork is associated with one larger hard sphere that can accommodate the

25 tightly packed spheres (when the entropic gain is given by Eq. 3). We

compute DFgain soft by comparing the volume excluded to the crowding

macromolecules by a sphere cap abutting the wall, where the cap has the

FIGURE 4 The rrn operons of E. coli. See Methods for details. (A and B)

Typical genome topologies. Positions of the origin (ori), terminus (ter), and
seven operons encoding ribosomalRNA (rrnA–G (shaded letters)) are shown

(23). In M9 1 glucose, replication began at the origin, and the two forks

progressed only a little away around the genome. In LB, an origin fired, the

two replication forks progressed most of the way to the terminus, and

duplicated origins refired. (C) Probabilities that cells contain different

numbers of foci marking rrn operons. Experimental data (gray line (40)) can

be fitted (red line (33)) assuming that all cells contain structures like that

illustrated in Bwith 22 rrn operons, and an attraction of 16.5 kBT between rrn

operons that brings one or more together so they appear as one focus; this

compareswith amaximumattraction of 31–56 kBT calculated in Fig. 2, row 3.
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same volume as the 25 spheres. The gain is given by the maximum over

h in the range [0,D] of the function:

f ðhÞ ¼ 3nkBT

D
2 � 2h2

3
� D3

3h

� �
d
2 : (9)

On the other hand, confining one of the forks in the topology of Fig. 4 A
to a distance x0 from the wall costs some entropy, which if the chain is a

freely jointed chain reads (l � L, and both L and l are much larger than 1,

with erf denoting the error function):

n
� ¼ lðL� lÞ

2L� l
; (11)

where x0, l, and L are all measured in Kuhn lengths. To arrive at Eq. 10, we

calculated the probability of having a network of freely jointed chains with

the topology in Fig. 4 A, integrating over the intermediate points and

requiring that this freely jointed network is rooted at a point. (The axes are

such that the bacterial surface lies at z¼ 0.) The exact entropic cost in Fig. 2,

row 10, is computed assuming that the network is displaced from x0 ¼ 250

nm (the center of the cell) to within the range of the entropic attraction to the

surface. The calculations leading to Eq. 10 are cumbersome but straight-

forward and are omitted here.

For Fig. 2 rows 14–17, DFgain is found as for rows 3–8. For row 17, we

model each polymerase, transcript, and spliceosome as three coplanar

contacting hard spheres (a 15-nm polymerase, 20-nm transcript plus bound

proteins, and 24-nm spliceosome). The free-energy gain is estimated by

considering the configuration where the two planar clusters are stacked in

register (so that equal-sized spheres are in contact). For rows 15–17, the

entropy gain is less than the loss due to looping, and so is insufficient to

ensure that the two transcription units are always together. However, the

interaction is sufficient to drive a temporary association, which keeps the

two together for a time, tpairing, which can be estimated using Kramer’s

theory (25) applied to the potential resulting from the radial integration of the

entropy depletion interaction (3), complemented with a Morse potential that

forbids the two large spheres to interpenetrate more than 0.1 nm. The

resulting expression is

tpairing � t0 exp
DFgain

kBT

� �
: (12)

For large spheres with a diameter of 10–20 nm, t0 is typically ;5 ms.

This estimate is based on the assumptions that the friction experienced obeys

Stokes’ law and the viscosity of the cell interior (h) is ;10 centipoise

(29,30). Applied to the case in Fig. 2, row 17, Eq. 12 provides an estimate for

tpairing of 0.3 ms. We now consider cooperative effects as three large spheres

cluster (Fig. 5 C). It appears natural to assume that the activation free energy

leading to the breaking of the cluster involves the loss of two contacts at a

cost of ;8 kBT. The estimated lifetime for the cluster is therefore ;0.1 s.

Since the viscosity of the cell interior grows rapidly with particle size.;25

nm (29,30), this estimate (based on a nominal value for h) provides a lower

bound for pairing time. We conclude that pairing lasts for a nonnegligible

fraction of the ;5 min it takes to transcribe a typical human gene (31).

For Fig. 5, A and B, we model each mRNA-producing complex as three

coplanar, contacting, hard spheres (a 15-nm polymerase, 20-nm transcript plus

bound proteins, and 24-nm spliceosome), although each triplet is represented

as one bead in the figure. The simulation began with a linear string, the (final)

attraction between any two triplets is modeled as a two-body square well with

a width of 5 nm and minimum equal to 4 kBT (Fig. 2, row 17). In Fig. 5 B, the

string was first compacted using an initial interaction of 8 kBT.

RESULTS AND DISCUSSION

The small crowding molecules in the cell have diameters (d)
of ;5 nm, and a volume fraction (n) of ;0.2; these

commonly accepted values (1,32) will be used throughout,

except for one extracellular case—the 100-mers (below). In

Fig. 2, various cases are listed according to their complexity;

FIGURE 5 Cooperative effects. See Methods for details. (A and B) Monte

Carlo simulations of 21 beads (green, terminal beads; red, internal ones)

threaded every 20 kbp along a (self-avoiding) 0.4-Mbp chromatin fiber

(blue). Each bead represents three spheres (15-nm RNA polymerase II,

20-nm transcript, 24-nm spliceosome). Starting with a linear string, fiber

segments are allowed to diffuse while being subjected to an attraction

between any two beads of 4 kBT (Fig. 2, row 17). In panel B, the string was

first compacted using an initial interaction of 8 kBT. After reaching

equilibrium, typical structures are visualized using RasMol software. The

numbers of beads in each cluster are indicated, which in both panels A and B

is more than the approximately five expected in the absence of cooperative

effects (from Fig. 2, row 17, calculated as for Fig. 3 A). (C) Trade-off

between entropic gains and losses. When two complexes pair, the entropic

gain involves one overlap volume (Fig. 1 A) relative to the cost of forming

one loop. Adding a third involves two more overlap volumes but only one

more looping cost; adding a fourth involves three more overlap volumes but

only one more looping cost. Adding more beads is progressively less

favored as crowding increases the looping cost; moreover, entanglement

becomes significant with more than around eight beads (52), and this limits

the maximum number of beads in a cluster.

exp ð�DFlossÞ ¼ erf
x0

ð2n�
=3Þ1=2

 !
1 exp �x

2

0

1

n
� �

n
�

ðL� lÞ2
� �� �

erf
x0n

�1=2

ð2=3Þ1=2ðL� lÞ

 !

1 exp �x
2

0

1

n
� � n

� 2

l
� 1

L� l

� �� �� �
erf

x0n
�1=2

ð2=3Þ1=2
2

l
� 1

L� l

� � !
: (10)
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each example is accompanied by an estimate (the ‘‘gain’’) of

how much the free energy is lowered upon contact of the

large spheres.

Sphere/sphere interactions

Actin

To put our analysis in context, we first consider a simple

example—the polymerization of two actin monomers. The

major energy source driving actin polymerization comes

from ATP hydrolysis; however, calculation shows that the

depletion attraction makes a contribution even though it

cannot provide directional assembly (which must be deter-

mined by other factors). Modeling monomers as noninter-

acting hard spheres (D ¼ 5 nm) in the presence of many

small spheres (d¼ 5 nm, n¼ 0.2) gives an entropic gain (i.e.,

DFgain) of;0.5 kBT (Fig. 2, row 1), compared to a measured

free-energy change of 1–2 kBT (33,34). We conclude that the

depletion attraction adds to other specific ones between

molecules, and we will argue that the same is true of the

cases discussed below. We can then calculate (using

Kramer’s theory) that monomers remain paired for three

times longer in the presence of crowding molecules (see

Methods).

Prebiotic RNA genomes

We now consider two of the simplest genomes. Current

theories for the evolution of life involve RNAmolecules able

to catalyze their own synthesis (35,36). But in this ‘‘RNA

world’’ lacking cell membranes, how are the critical compo-

nents prevented from diffusing apart to maintain the high

local concentrations necessary for continued evolution?

Possible solutions include binding to charged surfaces, and

capture within a confined space (e.g., a hydrothermal vent, a

puddle on a charged surface). However, the depletion

attraction could contribute. Thus, modeling two 100-mers

of RNA as 4-nm spheres in a crowded solution of smaller

molecules (d ¼ 1 nm, n ¼ 0.2) gives an attraction (gain) of

;1.4 kBT (Fig. 2, row 2). Here, too, pairing lasts roughly three
times longer than in the absence of the depletion attraction.

Two beads threaded on a string

We now turn to the central case of interest here, where the

two large spheres are threaded on a string; the spheres

represent active polymerases and the string hydrated DNA

(in prokaryotes) or a chromatin fiber (in eukaryotes). It is

well known that specific interactions between spheres can

drive genome looping. Thus, if two DNA-binding proteins

present at ;1 nM interact together with a Kd of 10�7 M

(values typical for nuclear proteins),,1% will be complexed

together in the absence of DNA (37). But if they bind to the

same DNA molecule at sites 10 kbp apart, the resulting local

concentration ensures that two-thirds will be in the complex

to loop the connecting DNA (37). Our central thesis here is

that the nonspecific depletion attraction can also make a sig-

nificant contribution in the crowded cell (Fig. 1 B). Whether

aggregation occurs depends on the balance between the de-

pletion attraction (i.e., DFgain; Eq. 1 in Methods) and DFloss

(the entropic penalty that must be paid to loop the connecting

string). This loss is well approximated by ckBT log(l/LK) 1
DFr0 (Methods). The constant c depends on loop conforma-

tion; it typically increases with string density from 1.5 for an

ideal random walk or freely jointed chain, through 2.2 for the

four-legged loop as in Fig. 1 B (22), to higher values if the

density is high. l is loop length, and LK the Kuhn length (a

measure of string stiffness). Notice that we include self-

avoidance in the case of the thick eukaryotic string (i.e., no

two segments of the fiber are allowed to occupy the same

volume). DFr0 is a constant that is independent of loop

length; it is physically related to the dimensions of the over-

lap volume and the range r0 of distances between the two

beads considered sufficient to form a loop (in our case #5

nm). In the cases modeled here, the spheres are polymerases

that remain irreversibly bound to their templates while

active.

Two free (untethered) spheres in a crowded cell will

diffuse in three-dimensional space and spend little time

together, and the extent of the small paired fraction can be

determined using van’t Hoff’s relation (Eq. 7 in Methods). If

the two spheres are tethered to each other, the inevitable high

local concentration plus depletion attraction ensure that

the paired fraction is greater. The (looping) probability of

finding the two spheres close enough together for their

excluded volumes to overlap is illustrated in Fig. 3 A, which
gives results for a freely jointed chain. (Similar results (not

shown) are found for self-avoiding and worm-like chains

(which differ by the presence of a nonzero stiffness pa-

rameter (25)).) Sharp transitions are seen between the

unbound (unlooped) and bound (looped) states with chains

of different lengths. The diameter of the large spheres (D)
and length of connecting string are important determinants of

whether or not a loop forms (Fig. 3 B); above the upper

(orange) line, two spheres will eventually come together to

form a loop. As before, the time the two spend together can

be estimated using Kramer’s theory (Methods).

‘‘Soft’’ beads

Individual polymerases bound to DNA are modeled as hard

(impenetrable) spheres. However, we also discuss interac-

tions between clusters of bound polymerases where each

cluster contains many active enzymes (e.g., DNA polymer-

ases in replication factories). Although modeled as two

clusters of (polymerase-sized) spheres or as two larger

spheres, individual enzymes probably intermingle when the

two clusters come into contact. Therefore, we also model

such clusters as ‘‘soft,’’ and allow individual hard spheres in

Entropy-Driven Genome Organization 3717

Biophysical Journal 90(10) 3712–3721



one cluster to intermingle on contact with their counterparts

in the other. The result is one large cluster with the combined

volume of the two original ones. Intermingling ensures that

the overlap volume is considerable, and the entropic gain

now depends on D2/d2 (Eq. 5 in Methods), compared to D/d
for hard spheres (Eq. 1 in Methods). As a result, soft clusters

are more likely to come together to form a loop, and smaller

diameters are needed to ensure looping (Fig. 3 B, lower red
line). These two cases (hard and soft) represent extremes;

true values are likely to lie between the two, and (conser-

vatively) we generally consider here the former.

Tunable interactions

The transition to the looped form occurs over a narrow free-

energy range of ;10 kBT (Fig. 3 A), roughly equivalent to

;7 H-bonds. It then might be advantageous for the cell to

ensure that DNA-binding complexes are of a size that can

exploit this transition (e.g., by creating or destroying only a

few H-bonds). The depletion attraction puts an upper limit on

the size of complexes that permit such tuning; if too large

(i.e., with diameters of ;100 and 40 nm for hard and soft

clusters, respectively), Fig. 3 B shows that there is a good

chance they will always aggregate to give loops. As we shall

see, Nature seems to set diameters so that the resulting

depletion attraction lies in this tunable range.

This prompts the question: why do not all complexes in

the cell—whether tethered or not—end up in one aggregate?

(The fraction in the aggregate can be found using Eq. 7 and

Fig. 3 for untethered and tethered components, respectively.)

We suggest that they will do so if the concentration of com-

ponents is high enough—for example, with hemoglobin S in

the red cells of patients with sickle cell anemia (38), and with

over-expressed proteins in bacteria (which sometimes form

inclusion bodies). Where both the concentration and scale of

the depletion effect are large enough to form aggregates, but

where experimental observations yield no evidence of ag-

gregation, it also seems likely that energy from other sources

must be spent to prevent aggregation.

Examples

Bacterial rrn operons

The genome of E. coli encodes 7 rrn operons separated on

average by;650 kbp (Fig. 4 A). In Luria broth (LB)—a rich

medium supporting division every 30–45 min—demand for

rRNA is high; ;70% of the RNA polymerase in the cell

transcribes one or other of these operons, and each rrn
operon is associated with ;70 active enzymes (23). As an

origin (ori) often fires and refires before genome segregation,

a cell typically has a genome structure like that in Fig. 4 B,
with ;22 active rrn operons (23). Treating each polymerase

as a hard sphere (D ¼ 10 nm), and each operon as a linear

string of 70 closely packed spheres, we find that the entropic

attraction (i.e., DFgain) between two operons significantly

exceeds the penalty that must be paid to loop the interven-

ing DNA (i.e., DFloss; Fig. 2, row 3). (Including nascent

transcripts (average length ;2500 nucleotides, or half the

length of the completed transcript) as spheres (D ¼ 10 nm)

attached to polymerases ensures that the attraction is even

higher (not shown).) This suggests that entropy depletion in-

evitably drives two active operons together.

In a nutrient-poor media like M9 1 glucose, cells divide

every 90–170 min and biosynthetic capacity switches away

from ribosome genesis; the genome structure is like that in

Fig. 4 A, and each rrn operon now associates with only about

four polymerases (23). As a result, the loss due to looping

outweighs the gain (Fig. 2, row 4), and rrn operons are

unlikely to be together.

These results are consistent with experimental data (28).

Taggingwith theGFP reveals that in LB the polymerases (and

so the;22 operons to which;70% are bound) are clustered

in one to six foci that disappear on transfer to M91 glucose.

The distribution of foci in LB (28) can be fitted assuming that

there is an attractive interaction of ;16.5 kBT between each

operon (Fig. 4 C); this compares with the value we calculate

for the (maximum) attraction of 31-56 kBT (Fig. 2, row 3).

Bacterial open reading frames

EngagedRNApolymerases are scattered every;24 and;8.6

kbp along the bacterial genome in LB and M9, respectively

(M. Bon, S. McGowan, and P. R. Cook, unpublished). If we

include only the polymerase, the gain is insufficient to over-

come the cost and so unlikely to bring two lone and adjacent

polymerases together (Fig. 2, rows 5 and 7). However, trans-
lation occurs cotranscriptionally, so ;10 (in LB) or 6 ri-

bosomes (in M9 (23))—each with a diameter of;21 nm—are

typically attached to the nascent transcript (length ;500

nucleotides, equivalent to half that of a typical mRNA); this

increases the gain so it now roughly equals the cost (Fig. 2,

rows 6 and 8), and adjacent polymerases are likely to be

together much of the time. (Treating ribosomes as soft spheres

and including cooperative effects (below) increases clus-

tering even further.) Unfortunately, we currently lack exper-

imental data to confirm this prediction.

Bacterial replication factories

GFP-tagging shows that active DNA polymerases in living

bacteria are concentrated in discrete factories containing at

least 25 polymerases often associated with the cell mem-

brane (39,40). We model a cluster of 25 polymerases at a

fork as one 37-nm hard sphere. Soon after initiation in a poor

medium (when little intervening DNA has been replicated),

the gain (2.4 kBT) is greater than the loss due to looping (not

shown), and we would expect the two forks to be together.

But as replication generates more DNA between forks, the

loss increases to a maximum of 15.5 kBT (Fig. 2, row 9),
when we would expect the two forks to have separated. It has
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been shown experimentally that the two forks do indeed

separate when ;30% of the genome has been replicated

(40), and we calculate that a looping cost of 11 kBT balances

the gain at this stage. This lies between values predicted for

hard and soft spheres (i.e., 2.4 and 16.9 kBT), so the depletion
attraction can alone account for the observed dynamics with

reasonable accuracy. It can also force spheres to associate

with the membrane for some time (Fig. 2, row 10). There-
fore, it provides a good explanation of why the two forks

separate when they do, and their location. However, we would

also expect that later the forks would aggregate again as they

converge toward the terminus (when looping costs decrease);

this is not observed experimentally (40), presumably because

the segregation machinery prevents it.

Human replication factories

Replication begins at origins scattered every 50–100 kbp

along a human chromosome, and several pairs of the resulting

replication forks are clustered in small replication factories

(diameter;75 nm); on passage through S phase, these facto-

ries grow into enormous structures (diameter ;1000 nm)

containing thousands of forks (14). As in bacteria, the entropic

gain is greater than the loss immediately after initiation, when

little replicated DNA lies between forks (not shown), so forks

will be together (Fig. 2, row 11). Again as before, the loss due
to looping increases to a maximum as more DNA is replicated

(Fig. 2, row 11); therefore, forks are likely to separate. Even

so, the gain is still sufficient to allow dynamic interactions

lasting seconds (Methods). Moreover, if the clusters at forks

are soft, they should remain together as the gain exceeds the

loss (Fig. 2, row 11). The same applies to two origins that have

just fired (Fig. 2, row 12), and to two distant factories (Fig. 2,

row 13). We conclude that the depletion attraction is sufficient

to bring together forks, active origins, and even factories sep-

arated by 1 Mbp—as is seen. Moreover, as more origins fire,

we would expect them to aggregate with existing clusters—as

they do.

Human rDNA genes

Each of the 10 loci encoding rRNA in the diploid human

genome contains ;80 tandem repeats, each with an ;13-

kbp transcription unit and an ;30-kbp ‘‘spacer’’; ;100

RNA polymerase I complexes transcribe each active unit in

the array. Active rDNA genes—but not inactive ones—

aggregate to form nucleoli (41). As the cluster of active

polymerases is so large and the spacer so short, the entropic

gain due to the depletion attraction far outweighs the loss due

to looping, and adjacent transcription units will inevitably

aggregate (Fig. 2, row 14). Once again, the attraction can

account for the organization seen.

Human open reading frames

RNA polymerase II transcribes most human genes. In a HeLa

cell, the active enzyme is concentrated in nucleoplasmic

factories, each containing about eight active enzymes

engaged on a different transcription unit (14,15). As RNA

processing occurs cotranscriptionally (42), each mRNA-

producing complex typically contains a polymerase (diam-

eter;15 nm), a nascent transcript (average length of;8400

nucleotides (43)) with compacted diameter ;14 nm plus its

bound proteins, and attached capping, splicing (one sub-

complex has dimensions of 27 3 22 3 24 nm (44)) and

polyadenylation machineries. Modeling such complexes as

25- or 40-nm hard spheres gives a DFgain slightly less than

DFloss (Fig. 2, rows 15 and 16), so they will be paired

between 1% and 5% of the time (Methods). Modeling the

polymerase, transcript, and spliceosome as three hard spheres

(a 15-nm polymerase, 20-nm transcript plus bound proteins,

and 24-nm spliceosome) ensures that they are paired 12% of

the time. Thus, this simple model (in which the size of the

polymerizing complex is almost certainly underestimated)

also explains why active genes tend to cluster.

Many beads on one string: cooperative effects

We now consider 21 beads (each representing one mRNA-

producing complex) threaded every 20 kbp along a 0.4 Mbp

of an active region of the human genome. Using Monte Carlo

methods (Methods), we model an attraction of 4 kBT between

beads (Fig. 2, row 17); simulations yield two populations

with energyminima depending on the approach used. Starting

with a linear string, segments diffuse to give structures with

;30% beads in clusters (Fig. 5 A). If the string is first com-

pacted (a more likely representation of what happens in

vivo), ;80% are in clusters (Fig. 5 B). This compares with

the ;12% found above. We attribute most of the extra clus-

tering to cooperative effects arising from the nonlinear in-

crease in number of overlap volumes as more and more beads

join a cluster (Fig. 5 C). Two factors may further increase

clustering: the mRNA-producing complex is probably larger

than we model, and—once such large structures come

together—the high nucleoplasmic viscosity will slow diffu-

sion apart (Methods). These results reinforce the idea that the

depletion attraction contributes to the observed clustering

and looping; moreover, similar cooperativity should be seen

with all other strings discussed.

CONCLUSIONS

We treat active polymerizing complexes as spheres threaded

on a DNA/chromatin string, and find that entropic forces

drive aggregation of the complexes to loop the intervening

DNA. This counterintuitive result is obtained despite the

looping costs, which are outweighed by the entropy gained

by the many small molecules that are packed into the cell.

We suggest that Nature exploits such nonspecific aggrega-

tion to organize genomes. We do not wish to suggest such

attractive entropic forces are the sole ones driving self-

assembly; rather, they will augment other specific interactions
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(e.g., involving H-bonds, electrostatic interactions) that also

position monomers precisely.

Our results help explain several aspects of genome

organization. First, we predict that active (but not inactive)

genomes will inevitably be looped, and they are (14,15,17).

For example, old evidence shows that loops are present in

active cells (from bacteria to man) but not in inactive ones

(e.g., chicken erythrocytes, human sperm); moreover, loops

are lost progressively as active chicken erythroblasts mature

into inactive eythrocytes (45). Recent evidence also shows

that three mouse genes spaced ;10 kbp and ;15 Mbp apart

on the genetic map are attached to one factory when

transcribed (with consequential looping), but not when

inactive (46). Moreover, inhibiting transcription in living

pro- and eukaryotes disperses their DNA (47–49), presum-

ably by releasing loops. Second, we can explain why

bacterial replication forks initially lie together before sepa-

rating (40), and why bacterial and eukaryotic replication

complexes tend to be found at the cell membrane or in

factories (14,39). Third, we can predict the fraction of

bacterial rrn operons found together in transcription factories
(28) with reasonable accuracy, and why—in eukaryotes—

active RNA polymerases I and II cluster in nucleoli and

nucleoplasmic factories (Cook, 1999). (It is likely that

energy must be spent to prevent polymerase I factories from

aggregating with polymerase II factories.) These results are

consistent with a model for genome organization in which

active RNA polymerases cluster to loop the intervening

DNA (15).

Our approach can readily be extended to other aspects of

genome and cellular organization. For example, the inter-

actions discussed here occur independently of scale. Then

we can model local effects (e.g., the aggregation of hard

nucleosomes into a soft cluster to form a chromatin fiber,

with the depletion attraction augmenting electrostatic inter-

actions (50)) as well as global ones (e.g., the aggregation of

heterochomatic clumps as chromosomes condense during

mitosis). Moreover, we deliberately consider only one string

here to simplify analysis; nevertheless, it is easy to imagine

that the depletion attraction drives the formation of nucleoli

and chromocenters (as active rDNA genes or centromeric

heterochromatin on different chromosomes aggregate), as

well as the pairing of meiotic chromosomes (as homologous

transcription complexes aggregate (51)). Finally, the deple-

tion attraction probably contributes to the formation of many

other large structures in cells (e.g., inclusion bodies, inter-

chromatin granule clusters), and—where large structures

like the cytoskeleton do exist—energy must be spent to

counteract the attraction from driving them into one large

aggregate.
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