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Complex small-world regulatory networks emerge
from the 3D organisation of the human genome
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The discovery that overexpressing one or a few critical transcription factors can switch cell
state suggests that gene regulatory networks are relatively simple. In contrast, genome-wide
association studies (GWAS) point to complex phenotypes being determined by hundreds of
loci that rarely encode transcription factors and which individually have small effects. Here,
we use computer simulations and a simple fitting-free polymer model of chromosomes to
show that spatial correlations arising from 3D genome organisation naturally lead to sto-
chastic and bursty transcription as well as complex small-world regulatory networks (where
the transcriptional activity of each genomic region subtly affects almost all others). These
effects require factors to be present at sub-saturating levels; increasing levels dramatically
simplifies networks as more transcription units are pressed into use. Consequently, results
from GWAS can be reconciled with those involving overexpression. We apply this pan-
genomic model to predict patterns of transcriptional activity in whole human chromosomes,
and, as an example, the effects of the deletion causing the diGeorge syndrome.

TSUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK. 2 MRC Human Genetics Unit, MRC
Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK. 3 Institute of Pathology, University
Medical Center, Georg-August University of Géttingen, 37075 Géttingen, Germany. 4 Sir William Dunn School of Pathology, University of Oxford, South
Parks Road, Oxford OX1 3RE, UK. ®email: dmarendu@ph.ed.ac.uk

| (2021)12:5756 | https://doi.org/10.1038/s41467-021-25875-y | www.nature.com/naturecommunications 1


http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-25875-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-25875-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-25875-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-25875-y&domain=pdf
http://orcid.org/0000-0002-5973-8179
http://orcid.org/0000-0002-5973-8179
http://orcid.org/0000-0002-5973-8179
http://orcid.org/0000-0002-5973-8179
http://orcid.org/0000-0002-5973-8179
http://orcid.org/0000-0003-0505-6081
http://orcid.org/0000-0003-0505-6081
http://orcid.org/0000-0003-0505-6081
http://orcid.org/0000-0003-0505-6081
http://orcid.org/0000-0003-0505-6081
http://orcid.org/0000-0002-6639-188X
http://orcid.org/0000-0002-6639-188X
http://orcid.org/0000-0002-6639-188X
http://orcid.org/0000-0002-6639-188X
http://orcid.org/0000-0002-6639-188X
http://orcid.org/0000-0003-3974-4915
http://orcid.org/0000-0003-3974-4915
http://orcid.org/0000-0003-3974-4915
http://orcid.org/0000-0003-3974-4915
http://orcid.org/0000-0003-3974-4915
mailto:dmarendu@ph.ed.ac.uk
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

ranscription—the copying of DNA into RNA—is tightly

regulated. Early insights into regulatory mechanisms came

from work on binary on/off genetic switches controlled by
one or just a few transcription factors such as the lambda and lac
repressor in Escherichia colil. Similar regulatory mechanisms are
present in eukaryotes, albeit with additional complexity. For
instance, a fibroblast cell can be reprogrammed into a muscle cell
by a single master regulator (MYOD)%3 or into pluripotent stem
cells by four Yamanaka factors (Oct4, Sox2, c-Myc, Klf4)%

Genome-wide association studies (GWAS) lead to quite a dif-
ferent view: gene regulation is widely distributed and involves
interactions between hundreds (perhaps thousands) of loci scat-
tered around the genome>®. GWAS allow quantitative trait loci
(QTLs) affecting any measurable genetic trait to be ranked in an
unbiased way. With complex traits like human height, and dis-
eases such as schizophrenia and type II diabetes, the top ten QTLs
in the rank order combine to yield only modest effects, while the
top one-hundred still account for less than half of the total genetic
effect. Hundred more QTLs are expected to be identified as sample
sizes and data resolution improve®~’. Expression QTLs (eQTLs)
are QTLs affecting transcription of other DNA regions. Perhaps
surprisingly, these are rarely found in genes encoding transcrip-
tion factors or other proteins; instead, they usually involve single-
nucleotide changes in non-coding elements that bind transcription
factors such as active enhancers and promoters3-10.

Results from GWAS lead to the view that most gene-regulatory
networks are incredibly complex, with the activity of a given gene
being affected by a panoply of eQTLs, each having a tiny effect.
This is captured by the “omnigenic” model, which is based on a
set of gene-interaction equations>® such that the activity of
almost any gene affects that of almost every other one. This
model provides a useful and appealing framework to view GWAS
results. However, it is difficult to compare its outputs with
experimental data because it contains many parameters that are
currently unknown and require fitting to training datasets.

In general, existing models for gene regulation traditionally
assume post-transcriptional and biochemically mediated inter-
actions between different genes!!'12, and disregard the role of
three-dimensional (3D) chromatin structure. Here we propose an
alternative but complementary framework that links transcrip-
tional regulation directly to 3D genome structure, deliberately
neglecting downstream biochemical regulation to enable unam-
biguous interpretation of our results. This framework is moti-
vated by experiments showing that chromatin folding can lead to
contacts between enhancers and promoters affecting transcrip-
tion, and that 3D structure changes in disease!>!4. Additionally,
because our modelling is essentially fitting-free, its output can be
directly compared to experiments. When the agreement is good,
our model is validated; when poor, it points to some missing
ingredient (such as biochemical feedback) that could be included
in future models.

We use stochastic computer simulations of a polymer model
for chromosome organization, in which a chain of beads repre-
sents a chromatin fibre, and a set of spheres complexes of tran-
scription factors and RNA polymerases—which we will call “TFs”
for short. Some chromatin beads are identified as transcription
units (TUs), and we call them TU beads. They contain binding
sites for TFs, and can be sites of transcriptional initiation (we do
not discriminate between genic and non-genic promoters). As a
simple starting point we only consider one type of TF that binds
specifically and multivalently to TU beads, and non-specifically
(i.e., with weak affinity) to every other bead. We perform 3D
Brownian dynamics simulations that evolve the diffusive
dynamics of the chain and associated factors. We previously
showed that similar polymer models yield structures resembling
those seen using chromosome-conformation-capture (3C)1>-1°

and microscopy?’. Here, we link 3D structure to expression and
transcriptional dynamics by measuring how often a TU bead is
transcribed—which we do by computing the fraction of time it
binds a TF. To establish the methodology, we model a 3 Mbp
chromatin fragment, before going on to simulate whole human
chromosomes.

Our simulations capture many features of eukaryotic regula-
tion. For example, transcription is stochastic and bursty (in
agreement with single-cell transcriptomics data), and the pre-
dicted pattern of transcriptional activity in human chromosomes
correlates significantly with that observed experimentally. We
also find that small-world (percolating) networks that encapsulate
much of the rich complexity observed in GWAS emerge through
spatial effects alone. In other words, the activity of most (probably
all) TUs in our model is affected by the activity of most (probably
all) other segments in the genome. We find such pan-genomic
regulation critically requires non-saturating concentrations of TFs
—as normally found in vivo—and that increasing concentrations
dramatically simplifies the networks. This enables us to reconcile
the GWAS-based view that regulatory networks are complicated
with the observation that overexpressing one or a few TFs can
decisively alter cell state.

Results

We first consider a simple system where a 3 Mbp chromatin
fragment is represented by a chain of 1000 beads (each 30 nm in
diameter, and corresponding to 3 kbp). We select at random
N =39 beads and identify them as TUs (Fig. la; see “Methods”
and Supplementary Note 1 for more details). The linear density of
TUs in the fragment is similar to that in human chromosome 22.
Additionally, n spheres (also 30 nm in diameter) represent TFs
(recall these are complexes of transcription factors and RNA
polymerase II). TFs bind reversibly to TUs via a strong attractive
interaction, and to all other beads weakly and non-specifically. An
important feature is that TFs switch between active (binding) and
inactive (non-binding) state at rate a. Many factors switch like
this in vivo (e.g., due to phosphorylation and de-phosphoryla-
tion), and switching is required to account for the rapid exchange
of factors and polymerases between bound and free states seen in
live-cell photobleaching experiments?!. As ~7 out of 8 poly-
merases attempting to initiate at promoters dissociate with a half-
life of ~2.4 s22, our complexes generally behave like those in vivo.

While our results refer to a single patterning of TUs along the
fibre, they are representative of any arbitrary random positioning
of TUs: in other words the qualitative trends we present below are
robust and do not depend on the particular choice of the 1D
pattern of TUs along the fibre in any way.

We say a TU bead is transcribed whenever a TF lies close to it
(see “Methods”), and the transcriptional activity of a TU is then
the fraction of time it is transcribed during a simulation. To
reflect the situation in mammalian cells (Supplementary Note 3
and ref. 23), we typically assume there are fewer TFs than TU
beads (i.e., n =10 TFs in the active binding state at any time,
compared to 39 TUs).

By interrogating TF-chromatin interactions at regular time
intervals over hundreds of simulations, we build up a population
picture of transcription. A typical configuration of the 3 Mbp
fragment is shown in Fig. 1B. Strikingly, bound TFs sponta-
neously cluster, despite there being no attractive interactions
between TUs or between TFs. Such clustering is driven by the
“bridging-induced attraction”%24:2> that arises due to a positive
feedback: when a TF forms a molecular bridge between two
chromatin regions and forms a loop, the local chromatin con-
centration increases, making further TF binding more likely.
Clusters then grow until limited by entropic costs of crowding
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Fig. 1 Patterns of transcriptional activity. A Schematic of the model. Twenty TFs (pink) that switch between on/off states at rate @ =10~573" (with 3 the
Brownian time, see “Methods") or 0.001s~" bind specifically to 39 TUs (red beads) randomly positioned along the chain, and non-specifically to other
beads (blue). A TU is considered transcriptionally active if associated with a TF. B Example conformation (TFs not shown). Some beads cluster and form
loops; one TU not in a cluster (and not transcribed) is green, and another that is in a cluster (and transcribed) is yellow. Inset: zoom of boxed region.

C Transcriptional activity for each TU bead averaged over 1000 simulations (each lasting 105zg). TUs are grouped according to activity, with red, green, and
blue bars showing high (>70%), medium (20-70%) and low (<20%) activity, respectively. This gives a population-level measure of activity. D Variation of
activity across simulations (reflecting cell-to-cell variation) for three representative TUs with high (red), medium (green), or low (blue) average activity

(defined as in C).

(Fig. S1A). Most of the non-trivial phenomena described below
result from such clustering. Clustering requires TF multivalency,
as monovalent factors do not cluster?®. However, the assumption
of multivalency, which is common in the polymer physics
literature!, is well-founded. Several TFs are known to be bivalent
or multivalent?®, and, more importantly, our spheres represent
complexes of TFs and polymerases, so they will behave as mul-
tivalent binders even when the individual TFs in the complex are
monovalent. Although clustering does not require any interac-
tions between TFs, adding a weak attraction between them, as
might arise for instance due to macromolecular crowding or
electrostatic interactions between intrinsically disordered regions,
should not qualitatively change any of the results discussed here
(at least as long as TFs still microphase separate into clusters
rather than undergoing macroscopic phase separation).

The clusters we observe, and which emerge through the
bridging-induced attraction, are qualitatively similar to those seen
in vivo, which are variously described as transcriptional com-
partments, hubs, super-enhancer (SE) clusters, phase-separated
droplets/condensates, and factories”>127-2%, They are also similar
to the contact domains seen in microC3%, which are formed by

accessible DNA sites clustering together in 3D space. Clustering
arising through the bridging-induced attraction has recently been
found in vitro for systems of DNA and cohesin (which binds
multivalently to DNA)3L.

Transcriptional activity varies along the chromatin fibre and is
highly stochastic. As TFs have the same affinity for all TUs, one
might expect each TU to be bound with equal likelihood; how-
ever, transcriptional activity (the fraction of time a TU is tran-
scribed) varies from ~10-90% (Fig. 1C). What causes this
variation? As TF copy number is limiting, and as bound TFs
cluster, most transcription occurs in clusters—as is the case
in vivo”32-34 Since TUs are positioned irregularly along the
fragment, some have closer neighbours in 1D sequence space
than others, and these are inevitably the ones most likely to
cluster and be transcribed. Instead, those far from their neigh-
bours are less likely to cluster and are less active. Accordingly, the
transcriptional activity of a TU anticorrelates with distance to the
nearest TU along the fibre (Fig. S1B; the Spearman correlation is
ro —0.94, p value p<10~12),
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Fig. 2 Transcriptional bursting. A Snapshots showing a 100-bead section of the simulated chain taken at different times. Initially, none of the 5 TUs (red)
are in clusters and they are all inactive; later, 4 TUs join a cluster and are close to TFs—and so are transcribed. B Kymograph where each row shows the
changing transcription state of one TU during a simulation; pixels are colored red if the bead is associated with a TF and so transcribed, or black otherwise.

White rectangle: example of bursts.

While Fig. 1C pertains to population averages of 1000 simula-
tions, it is informative to consider each simulation independently
(as in single-cell transcriptomics). Such analysis shows that
transcriptional activity is stochastic, varying substantially from
simulation to simulation: a TU active in some simulations may be
silent in others (Fig. 1D).

Transcriptional bursting. During a simulation, chromatin con-
formation can change dramatically (Fig. 2A). Such changes often
yield transcriptional “bursts”—periods of continued activity fol-
lowed by silent periods (Fig. 2B)—as TUs with intermediate levels
of activity repeatedly join a cluster to give a burst and then dis-
sociate. Notably, TUs lying close to each other in sequence space
often start and stop bursts coordinately due to the intrinsic
positive feedback in the system (Fig. S1A).

These results are consistent with experimental observations:
single cell Hi-C3 and transcriptomics3® show that the structure
and function of each individual cell is unique, and bursting is well
documented37-40 with nearby promoters often firing together3s.

Local chromatin architecture creates small-world percolating
transcription networks. To investigate correlations between
transcriptional activities of different TUs, we compute the Pear-
son correlation matrix between the activities of all possible TU
pairs, and identify an emergent regulatory network in which TUs
form nodes (Figs. 3A and S2). Specifically, we draw an edge
between two TUs whenever there is a statistically significant
positive or negative correlation between their transcriptional
dynamics (Fig. 3A). This network arises only due to spatial
interactions, as we assume no underlying biochemical regulation.

The network shows a striking property. With n=10 active
TFs, most nodes are connected (Fig. 3Aii), and the fraction of
TUs participating in the largest connected component is close to
1 (Fig. 3B). Such a network is said to be “percolating”, which

means that any two nodes are connected by a path along edges.
Our percolating networks are also “small-world”, which means
that most nodes can be reached from every other node by a small
number of steps*! —we provide quantitative measurements of the
small world-ness of our networks in the SI (Supplementary
Note 4). The small-world phenomenology is consistent with the
multitude of small-effect eQTLs detected by GWAS>°. Notably,
the regulation we observe acts at the transcriptional level, and not
post-transcriptionally as envisaged by the omnigenic model®.

How might our simple model give rise to complex regulatory
networks? By analysing simulation trajectories, we noted that TUs
lying near each other in 1D sequence space often joined the same
cluster in 3D. As a result, the activity of these clustered beads is
highly positively correlated. At the same time, cluster formation
sequesters TFs and so reduces the likelihood that another cluster
forms elsewhere. As a result, most long-range correlations are
negative (Fig. 3A).

Crucially, these network properties depend on there being a
low TF copy-number (as in vivo??) so TU beads do not become
saturated. We therefore reasoned that increasing copy number
should suppress correlations as more rarely transcribed TUs are
pressed into use. Indeed, increasing # reduces long-range negative
correlations (Fig. 3Aiii,iv), and the fraction of nodes in the
largest-connected component falls (Fig. 3B). Another way to
think about this result is: if resources are plentiful, there is no
need for sharing or competition, and all TUs can bind a TF
independently of each other. If TFs do not switch and are
permanently in the binding state (and n=10), the network
becomes even more highly connected (Fig. 3Ai).

Modelling effect of mutations and SNPs in regulatory ele-
ments. GWAS reveals that single-nucleotide polymorphisms
(SNPs) in regulatory elements and TUs can lead to many small
changes in transcriptional activity across the genome. To model
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Fig. 3 Regulatory networks formed by TU beads are percolating at low TF concentrations. Simulations (as Fig. 1, with >800 simulations/condition) with
different average numbers of active TFs (n) and switching rate (a). Networks were constructed by calculating the Pearson correlation between the
transcription time series for all pairs of TUs; nodes represent each of the 39 TUs and edges are placed between nodes where there is a significant
correlation (>0.15 in absolute value, corresponding to p < 10~%; two-sided Student's t-test). A Effect of TF concentration and switching. Thirty-nine nodes
are shown around the perimeter, and thick black and grey lines denote positive and negative correlations between transcriptional activities of bead pairs.

B Effect of n on the fraction of nodes in the largest connected component.

this, we abrogate TF binding to one TU in the chain. Bead 930 is
chosen first because it is usually highly active (Fig. 1C). This
single “knock-out” affects in a statistically significant way the
activity of almost half of the other TUs, both near and far away in
sequence space (Fig. 4Aii). The immediately adjacent TU (ie.,
bead 931) is down-regulated the most, while more distant ones
are up-regulated (due to loss of a strong competitor). This knock-
out also rewires the whole network, even though it still retains its
small-world character (Fig. 4Aiii). Both positive and negative
interactions are affected along the whole chain, as shown by a
heat map of the change in Pearson correlation between TU
transcriptional activities (Fig. 4Aiv).

We next systematically knock out each TU in turn. To quantify
global effects, we define a “transcriptional difference” between the
wild type and each knock-out based on a standard Euclidian-
distance metric (SI, Supplementary Note 2); the larger this
quantity, the more different the two states are. This difference
varies >10-fold between different mutations (Fig. 4Bi).

Together, these observations are reminiscent of the behaviour
of SNPs and eQTLs. Thus, each TU mutant can be seen as a SNP
underlying an eQTL; then, those with low and high transcrip-
tional differences (Fig. 4Biii) are low- and high-effect eQTLs
(low-effect mutants are often isolated in sequence space), and
those with wide effects (e.g., bead 930 in Fig. 4A) may be viewed
as omnigenic.

Modelling loops, heterochromatin and euchromatin. In mam-
malian genomes, promoter-enhancer pairs are often contained in
loops stabilized by cohesin and the CCCTC-binding factor
(CTCF)#~%4, To investigate how such loops might affect

transcription, we incorporated eight permanent and non-
overlapping loops at different positions in the chain (Fig. 5A,
loops a-h). In reality, such loops may arise from extrusion by
cohesin halted at convergent CTCF loops#2. Our assumption of
stable, permanent loops is quantitatively accurate in the limit in
which the interaction between cohesin and CTCF is strong and
long-lived. However, we expect the trends to be qualitatively
similar for more transient loops consistent with the loop extru-
sion model as in refs. 1943,

The inclusion of stable loops has subtle effects. For example,
loop h encompasses three TUs (beads 905, 907, 930), and
expression of one is slightly boosted compared to the unlooped
case (Fig. 5B, C). This is consistent with the idea that looping
switches on some genes during development®>, and can increase
enhancer-promoter interactions*®47. However, up-regulation
requires appropriate positioning of a TU within the loop. For
instance, loop d encompasses two TUs (beads 396 and 404), and
has no effect on their activity. Broadly speaking, looping up-
regulates activity, but not invariably so, and—perhaps surprisingly
—two of the three most up-regulated TUs (beads 33 and 886) are
not contained in loops (Fig. 5C). Looping also extensively rewires
the regulatory network (Fig. 5D, E). Globally, the increase in
activity is modest, as incorporating all beads into closely packed
loops only increases total activity by ~10%, with—once again—
some TUs being down- as well as up-regulated (Fig. S3). This is
consistent with experiments showing that the interplay between
looping and expression is complex*® but slight (e.g., knocking
down human cohesin leaves expression of 87% genes unaffected,
with global levels changing <30%%°).

In simulations thus far, TFs bind strongly to TU beads, and
weakly to all others to model binding to open euchromatin!®>?. To
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Fig. 4 Modelling SNPs and eQTL action. Sets of simulations (=800 simulations/condition) where each of the 39 TU beads is made non-binding in turn (to
represent 39 different SNPs in regulatory elements) are compared with those with the "wild-type" chain (as Fig. 1). A Chain with mutant (non-binding) TU
bead 930. (i) Snapshot. TFs not shown (inset: same structure without blue beads). (ii) Transcriptional rates of the 17 TUs with significantly different values
in mutant fibre compared with the wild-type one (p ~ 0.046; two-sided Student's t-test). (iii) Regulatory network inferred from the matrix of Pearson

correlations between activities of TUs. (iv) Change in Pearson correlation between TUs. B Results from simulations where each TU bead is mutated in turn,
and the "transcriptional difference” from the wild type (see text and Supplementary Note 2) determined. (i) Transcriptional difference versus position along
the chain. (ii) Positive correlation of transcriptional difference with TU activity in wild type. The plot shows that if we mutate a TU with high transcriptional

activity, this leads to a larger difference.

investigate the effects of heterochromatin—which binds few TFs,
carries few histone marks®!, and is gene poor and traditionally
viewed as transcriptionally inert—we perform simulations where
four of the most-active TUs (905, 907, 930, and 931) are embedded
in a non-binding segment (running from bead 901-940). This has a
dramatic effect (Fig. 6A-C): the activity of the TU beads now
embedded in the non-binding island are at least halved, some
nearby neighbors are down-regulated, and more distant ones up-
regulated (again due to a reduction in competition; Fig. 6B, C). The
regulatory network is also rewired (Fig. 5D, E).

Just as embedment in a non-binding segment down-regulates a
TU bead, embedment in a weak-binding (euchromatic) one up-
regulates it (Fig. S4). This shows our model effectively captures
position effects where the local chromatin context strongly
influences activity®2.

Modelling a whole human chromosome. We next model a
whole mid-sized human chromosome (HSA 14, length 107 Mbp;

Fig. 7A) in a well-characterized and differentiated diploid cell
(HUVEC, human umbilical vein endothelial cell). Now, multi-
valent and switchable TFs (20% active at any moment) at a non-
saturating concentration bind to a string with 35784 beads. As
chromosome territories are often ellipsoidal, simulations
are performed in an ellipsoid of appropriate size””3; conse-
quently, chromatin density is now higher than in simulations
detailed above, with volume fractions comparable to those in vivo
(~14%).

Chromatin beads are classified using DNase-hypersensitity
data and ChIP-seq data for H3K27ac. DNase-hypersensitive sites
(DHS) are excellent markers to locate promoters and enhancers
(and so TF-binding sites'®>*), whereas H3K27ac modifications
strongly correlate with open chromatin!®. Therefore, if the 3 kbp
region corresponding to a chromatin bead has a DHS, then that
bead is a TU; if it has H3K27ag, it is a euchromatin bead, and all
other beads are non-binding (heterochromatic). We call this the
“DHS” model. As properties of different chromatin segments
have been catalogued using “hidden-Markov models” (HMM:s)
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Fig. 3A). E Change in Pearson correlation between TUs due to loops.

applied to many data sets®!, we alternatively classify beads
according to HMM state; we call this the “HMM model” (Fig. S5).
For more details, see Supplementary Note 3.

Simulations using the DHS model again yield clusters enriched
in TUs and TFs (Fig. 7B). As before, aggregating data from many
simulations allow determination of transcriptional activities of
every bead, which we compare with those of corresponding
regions determined experimentally>> by GRO-seq (global run-on
sequencing®®); activities of all 3 kbp regions are ranked from high
to low, binned into quintiles, and compared. In Fig. 7C, squares
near the diagonal from bottom-left to top-right have high ranks
(shown as red and yellow) compared to those off-diagonal (blue
and purple) indicating good concordance between simulations
and data. A specific sub-set of beads corresponding to SEs—
which are highly active in vivo’’—are also highly active in
simulations (shown as white dots concentrated at top right). Plots
showing the rank of transcriptional activities in simulations and
experiments in selected genomic regions are shown in Fig. S6.
Simulations yield patterns qualitatively closer to those obtained
with GRO-seq than those given by poly(A)* RNA-seq, as the
latter only include genic transcription. Concordance between
results from simulations and GRO-seq is confirmed by the
Spearman rank correlation (~0.38 for all beads; p < 10~12; this
measure is used because it is less sensitive to outliers; Fig. 7D).
Restricting analysis just to TUs provides a more stringent

comparison (as all TUs bind TFs with equal affinity); it still
yields a significant correlation (r=~0.32, p <107!2; Fig. 7D). As
neighbouring high-affinity regions tend to have roughly similar
transcriptional rates in both simulations and data, we also average
rates found in active “patches” (contiguous sets of beads which
are either all TUs or all labelled as euchromatin), but found this
has no significant effect (Fig. 7D). Concordance was confirmed
using our HMM model (Fig. 7D, right, and Fig. S5). Adding
cohesin-mediated looping to simulations involving the DHS
model did not significantly change agreement with experimental
data (e.g., for TUs only, r=~0.33, p<10~12). Similar agreement
with GRO-seq data was obtained from simulations applied to the
H1 human embryonic stem-cell line (for TUs using the DHS
model, r=~0.29, p<10712), and to the GM12878 cell line (DHS
model, r~0.33, p<10~12),

As in the chromosome fragment simulations (Fig. S1B), the
transcriptional activity of a TU in our model anticorrelates with
the distance to the nearest TU. In our HSA14 simulations, the
presence of heterochromatin slightly reduces the absolute value of
the correlation, which however remains highly significant
(Spearman correlation r~ —0.83, p<10~12). Interestingly, the
experimental GRO-seq signal of a DHS also anticorrelates with
the distance to the nearest DHS in a significant way, although
more weakly than in simulations (Fig. S7; over the whole genome
the Spearman correlation is r ~ —0.23, p < 10~12).
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Fig. 6 Neighboring heterochromatin affects transcriptional activity. Results from two sets of simulations (at least 800 runs for each condition) are
compared; one set as Fig. 1, in the other beads around TU beads 905, 907, 930, and 931 (from bead 901 to 940) are non-binding (to represent embedding
the TU beads in heterochromatin). A Snapshot with heterochromatic beads shown in gray (TFs not shown; inset—the same structure with only TUs).
B Average transcriptional activity for each TU. € Comparison of average transcriptional activity with respect to wild type for the 22 TUs with significantly
different values in the two sets (p ~ 0.003; two-sided Student's t-test). D Regulatory network inferred from the matrix of Pearson correlations between
activities of TUs (as Fig. 3A). E Change in Pearson correlation between TUs due to heterochromatin.

Networks inferred from simulations are qualitatively similar to
experimental ones. Regulatory networks emerging from our
whole-chromosome simulations are again small-world and highly
connected (Fig. S8 and Supplementary Note 4). To facilitate
comparison with previous results, we select four segments of
HSA14 that have the same length as the one considered in Fig. 3
(i.e., 3 Mbp), and roughly the same density of TUs; all four seg-
ments again have highly connected components (compare Fig. S8
and Fig. 3). However, patterns in real chromosomes and artificial
fragments are quite different. In HSA14 networks, there are more
positive interactions between sets of adjacent TUs and other sets
that are >10 beads distant in sequence space (black lines across
the middle of circles in Fig. S8).

Whole-chromosome networks also have the following statis-
tical properties. First, their node-degree distribution decays
exponentially (Fig. S9A)—as found in gene networks®® but not
in transcription factor interaction networks, which are often
scale-free®®. Second, they are modular (as clusters arising due to
the bridging-induced attraction are the basic co-regulated

building blocks)—again as found in gene®8 and eQTLS? networks.
[Modularity is apparent from the blocks visible in the correlation
matrices, such as in Fig. S2.] Third, node degree broadly
correlates with transcriptional activity (Spearman correlation
0.59, p value < 10712)—as in gene coregulation networks’S.

Contact maps found by simulations are qualitatively similar to
Hi-C. We previously showed!¢ that simulations involving two
different TFs (binding to active and inactive regions, respec-
tively) yield contact maps much like those found with Hi-C*2.
Therefore, we expected the present simulations to reflect Hi-C
data poorly as they involve only one TF binding to the minor
(i.e., active) fraction of the genome, so contacts made by this
structured minority would be obscured by those due to the
unstructured majority. Even so, simulations yield contact maps
broadly similar to those obtained by Hi-C (Fig. 7E). To measure
the agreement, we use a comparison based on contact maps
restricted to TUs as anchors—which may be considered as
equivalent to interactions obtained by promoter-capture HiC®!,
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These yield good concordance (Fig. 7E; Pearson coefficient
r=0.82; r=0.47 when monitoring only long-range contacts
between TUs at least 300 kbp away, p < 1079 in both cases). The
exponent with which contact probability decays with 1D distance
is ~—1.1 in experiments, and ~—0.8 in simulations (fitted for 1D
distances between ~30kbp and 1.5Mbp), both broadly con-
sistent with the —1 value expected for a fractal globule®2. The

small discrepancy may point to our simulations slightly over-
estimating the weight of long-range contacts, perhaps because we
do not include loop extrusion.

Opverall the results obtained in our HSA14 simulations show
that a simple model based on 3D chromatin organisation captures
much of the complexity in 3D structure and transcription of a
whole human chromosome.
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Fig. 7 Comparison of transcriptional activities of TUs on HSA14 in HUVECs determined using simulations and GRO-seq. A Workflow (DHS model).
Simulations (244 runs) involve a chain (35,784 beads) representing HSA14, and 1700 switchable TFs confined in an ellipsoidal territory. Beads are
classified as TUs (red, strong binding), euchromatic (blue, weak binding), or heterochromatic (grey, non-binding). Transcriptional activities from
simulations are compared with those of GRO-seq data, by measuring the Spearman rank correlation. B (i) Snapshot (TFs not shown). (i, iii) TU beads and
TFs in this configuration. € Comparison of transcriptional activities of TUs from simulations and GRO-seq (ranked from O to 100%, then binned in quintiles
and showed as a heat map). A scatter plot of unbinned ranks of beads corresponding to SEs are superimposed (white circles). D Comparison of
transcriptional activities from simulations (for both DHS and HMM models) and GRO-seq for all 3 kb regions/beads, only TUs, and only connected patches
of binding beads (see text). All correlations are significant (p < 10~%; two-sided Student's t-test, indicated by grey lines). E (i, ii) Capture-HiC-like contact
maps obtained from simulations and experiments42 showing logarithm of number of contacts between 30 kbp bins which contain TUs.

Modelling chromosome 22 carrying the diGeorge deletion. Our
approach can, in principle, be applied to study any chromosome
providing appropriate genomic data are available (e.g., on DNase
hypersensitivity and histone acetylation). As a proof of principle,
we studied the effect of deleting ~2.55 Mbp from HSA22—an
alteration which is associated with the diGeorge syndrome
(Fig. 8A) (https://dosage.clinicalgenome.org/clingen_region.cgi?
id=ISCA-37446). This syndrome affects ~1 in 4000 people, and
the variable symptoms include congenital heart problems, fre-
quent infections, developmental delays, and learning problems.

We predict a multitude of small effects in TU activity, both
near and far away from the deletion (see the Manhattan plot in
Fig. 8Bi). In particular, most TUs are slightly up-regulated, as
fewer TUs compete for the same number of factors, and the TUs
which change the most have intermediate transcriptional
activities in the wild type (Fig. S10). The p values associated
with the change in transcriptional activities vary widely, and
comparison of the observed distribution with the null hypothesis
(indicating that changes in measured transcription are due to
random variation) shows the observed is highly enriched in small
p values (Fig. 8Bii), as is generally the case with results from
GWAS>®. The regulatory network is also re-wired (Fig. 8C).
Results are consistent with measurements of differential gene
expressions in patients, which showed both a large number of up-
regulated and down-regulated genes®>. A more quantitative
comparison between experiments and simulations would benefit
from having GRO-seq data that include non-genic transcription.

Clearly, this approach opens up a rich field of study. For
instance, while there may be processes which occur in vivo which
are not represented in our model, it could still give an indication
of the genes most likely to be affected by any chromosome
rearrangement.

Discussion

We have described a parsimonious 3D stochastic model for
transcriptional dynamics based on multivalent binding of factors
and polymerases (TFs) to genic and non-genic transcriptional
units (TUs) in a chain representing a chromatin fibre. A dis-
tinctive feature of our framework is that it is fitting-free, which
means the model is truly predictive and can provide a mechan-
istic understanding of the phenomena we observe. On the other
hand, the absence of fitting renders it challenging to obtain a fully
quantitative agreemeent between modelling and experiment.

In our simulations two types of fibres were considered: a 3 Mbp
fragment with randomly-positioned TUs, which is useful to
exemplify emerging trends, and human chromosomes 14 and 22
where TUs were appropriately positioned according to bioinfor-
matic data. Despite deliberately excluding any explicit underlying
network of biochemical regulation, our model nevertheless yields
some notable results. These depend on having a low TF copy-
number—a feature compatible with observations in vivo?3. First,
since TFs bind with the same affinity to all TUs, one might expect
the latter to all be transcribed similarly, but they are not (Fig. 1).
This is largely due to inter-TU spacing; TUs lying close together

in 1D sequence space tend to be the most active (Fig. 1C) with
positively correlated dynamics reminiscent of transcriptional
bursting (Fig. 2B). This is because they often cluster into struc-
tures which are analogous to the phase-separated transcription
hubs/factories seen experimentally”!9, or to contact domains
formed by accessible DNA sites found by high-resolution map-
ping of chromatin interactions by microC3{. Second, switching
off binding at any TU significantly affects the activity of many
others, both near and far away in sequence space (Fig. 4). Third,
introducing stable loops has subtle effects (Fig. 5), consistent with
the result that cohesin knock-outs and degrons lead to small
global changes in expression?®, although they can be important
for inducible gene response in selected cases?®. Fourth, tran-
scriptional activity of a TU is strongly affected by the local
environment in ways that are reminiscent of the silencing of a
gene by incorporation into heterochromatin®? (Fig. 6), or acti-
vation by embedment in euchromatin (Fig. S4). Fifth, the sto-
chasticity seen in individual simulations reflects that detected by
single-cell transcriptomics and single-cell Hi-C. Nevertheless, this
variability does not prevent emergence of robust phenotypes in a
cell population. Sixth, our simple fitting-free model predicts
patterns of transcriptional activity in human chromosomes that
promisingly and significantly correlate with experimental GRO-
seq data (Fig. 7). This suggests that chromatin structure sig-
nificantly constrains transcriptional activity. We hypothesise that
additional downstream biochemical regulation, not included in
our model, may provide a tool to adjust this underlying “struc-
tural” pattern of activity in a way which may be required for
appropriate biological function.

Finally, our results enable us to reconcile two conflicting sets of
data, namely that regulatory networks are both complex (as
GWAS shows that thousands of loci around the genome control
complex phenotypes>®) and simple (as over-expressing just four
Yamanaka factors switches cell fate?). Thus, our simulations
reveal complex small-world networks of mutual up- and down-
regulation (Figs. 3 and S8), consistent with GWAS results.
However, increasing TF copy-number dramatically simplifies
network structure (Fig. 3). We suggest such a simplification
occurs when a fibroblast is reprogrammed into a pluripotent stem
cell by over-expressing the Yamanaka factors; the high factor
concentration simplifies the network so that the factors can
combine to switch the phenotype (Fig. S11).

Taken together, these results suggest the activity—or inactivity—
of every genomic region affects that of every other region to some
extent. We describe our framework as “pan-genomic” (Fig. S11).
This is reminiscent of the omnigenic model>® in the sense that
many loci are involved, all having small effects. However, it differs
as it provides an underlying mechanism for pangenomic effects, by
positing a direct and immediate effect of structure on regulation at
the transcriptional level, which contrasts with the non-trivial post-
transcriptional pathways envisioned by the omnigenic model.
Additionally, our pangenomic model yields a natural framework to
qualitatively understand mutually exclusive gene expression, when
switching on one gene in a family turns off all others (as in
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Fig. 8 Modelling effects of the DiGeorge deletion in HSA22. A Workflow. Simulations (800 simulations/condition) for wild type (17,102 beads) and
deletion (16,250 beads, where wild-type beads 6305-7156 are cut, corresponding to a deletion of chr22:18,912,231-21,465,672 in hg19). [Agreement
between predicted transcriptional activity and GRO-seq in HSA22 is similar to that found for HSA14 (here, Spearman correlation is r~ 0.29, p <10~6; two-
sided Student's t-test).] B (i) Manhattan plot showing —log 1, (p value) as a function of genomic position along HSA22 (position given in Mbp), for changes
in TU transcriptional activities between wild type and deletion. (i) Quantile-quantile plot showing expected versus observed values for —log,,(p value) for
the same data in (i). Expected values are computed from the normal distribution (these correspond to the null hypothesis according to which the change in
transcriptional activities in the deletion is purely due to random variation). (iii) Regulatory networks of two 3 Mbp segments in chromosome 22 inferred
from the Pearson correlation matrix. Edges show positive correlations >0.12 (p = 0.0007). Segments chosen have roughly the same number of nodes in

3 Mbp as the short fragment (Fig. 3Aii).

developing olfactory neurons®4). The current model to explain this
phenomenon postulates a coupling between cis-acting up-regulation
and trans-acting down-regulation. The pangenomic networks we
find provide exactly this type of regulatory interactions (Fig. 3). Our
results are also consistent with recent experiments and mathema-
tical models showing that subtle changes in 3D structure can lead to
large changes in transcription®>%. On the other hand, it is chal-
lenging within our current model to account for local negative
feedback mechanisms leading to noise reduction or oscillations!?, as
these are more likely to arise biochemically (an example is the
p53-Mdm?2 system which achieves stabilisation of the cellular
concentration of p53 via a negative feedback loop®?).

In conclusion, we have developed a framework that can be
applied to predict the transcriptional activity of any genomic
fragment in health or disease (Figs. 7 and 8) providing

appropriate experimental data are available. Predictive power can
be enhanced by incorporating additional TFs, and more suitable
datasets of histone marks. Other features that can improve cor-
relations between experiments and simulations are a more
accurate modelling of cohesin loop formation by loop extrusion,
and of the heteromorphic nature of chromatin!®. We hope to
report on work incorporating the latter two features in the future.

Methods

Polymer modelling. We model chromatin fibres and chromosomes as bead-and-
spring polymers. A fibre has M monomers, each of size o (corresponding to 3 kbp,
or 30 nm?%), and r; denotes the position of the ith monomer in 3D space. Multi-
valent transcription factors (either active or inactive) are modelled as spheres, again
with size o for simplicity. There are n multivalent factors in a simulation (where n
is varied systematically, see text and “Results” section for details), and N high-
affinity binding sites, which we refer to as TU (or TU beads).
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Any two monomers (i and j) in the chromatin fibre interact purely repulsively,
via a Weeks-Chandler-Anderson potential, given by
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if rjj < 2165 and 0 otherwise, where r;; is the separation of beads i and j. There is
also a finite extensible non-linear elastic (FENE) spring acting between consecutive
beads in the chain to enforce chain connectivity. This is given by
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where i and j are neighbouring beads, Ry = 1.60 is the maximum separation
between the beads, and K= 30kT/0? is the spring constant. With simulations
including permanent cohesin loops (Fig. 7 in the main text, and Supplementary
Fig. S4), neighbouring monomers and monomers forming loops interact via
harmonic, rather than FENE springs,

i 2

; _
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where i and j are neighbouring beads, K, = 100kpT/0? is the harmonic spring
constant, and R is the equilibrium spring distance. For these simulations, we use
R = 1.1¢ for bonds joining neighbouring monomers along the chain, and R = 1.8¢
for bonds joining loop-forming monomers. The harmonic potential is used instead
of the FENE one to enhance numerical stability.

Finally, a triplet of neighbouring beads interact via a Kartky-Porod term to
model the stiffness of the chromatin fibre. This term explicitly reads as follows:

- =
g kTG | T W
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where i and j are neighbouring beads, T ; is the tangent vector connecting beads i
to i+ 1, and £, is related to the persistent length of the chain: this parameter is set
to 30 in our simulation, which corresponds to a relatively flexible fibre—the
resulting persistence length is within the range of values estimated for chromatin
from experiments and computer simulations®.

The interaction between a chromatin bead, a, and a multivalent TF, b, is
modeled through a truncated and shifted Lennard-Jones potential, given by

P 12 P 6 a 12 o 6
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for d,;, (the distance between the centres of chromatin bead and protein) smaller
than r,, and 0 otherwise. The parameter r, is the interaction cut-off; it is set to
r.= 21/6¢ for inactive proteins or for active proteins and non-binding chromatin
beads (this cutoff results in a Weeks-Chandler-Anderson potential and purely
repulsive interactions), or to r. = 1.8¢ for an active protein and a binding
chromatin bead (this results in an attractive interaction). In all cases, the potential
is shifted to zero at the cut-off in order to have a smooth potential. Purely repulsive
interactions are modeled by setting €,, = kg T, while attractive interactions are
modeled using €,, = 3kpT for active TF and low-affinity beads, and to €, = 8kgT
for active TF and high-affinity (TU) beads.

A TU bead (or more generally any chromatin bead in Fig. 8D in the main text)
is said to be transcribed if it is bound to a factor—i.e., if there is at least a TF whose
centre lies within a range r. = 1.80 away from the bead centre.

The time evolution of each bead in the simulation (whether TF or chromatin
bead) is governed by the following Langevin equation:

#7, a7
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where U; is the total potential experienced by bead i, m; = m and y; = y are its mass

and friction coefficient (equal for all beads in our simulations), and 71>i is a
stochastic noise vector with the following mean and variance:

(@) =05 {1, (O (1)) = 8;0,50(¢ — 1), %)

where the Latin and Greek indices run over particles and Cartesian components,
respectively, and ¢ denotes here the Kronecker delta.

As is customary®®, we set m/E = 71; = T3, with the L] time 7;; = 0y/m/e and
the Brownian time 73 = 0%/D, where ¢ is the simulation energy unit, equal to
kpT, and D= kgT/y is the diffusion coefficient of a bead of size 0. From the
Stokes friction coefficient for spherical beads of diameter ¢ we have that
& = 371,010 where 74, is the solution viscosity. One can map this to physical
units by setting T =300 K and 0 = 30 nm, as above, and by setting the viscosity
to the effective viscosity of the nucleoplasm, which is scale-dependent and
ranges between 10 and100 cP for objects of the size of our chromatin bead”’.
This leads to 71 = 73 = 377,010°/€ =~ 0.6-6 ms. The Brownian time 7 is our unit
of time in simulations. The numerical integration of Eq. (6) is performed using a
standard velocity-Verlet algorithm with time step At =0.017g and is
implemented in the LAMMPS engine’!. Protein switching is including by

stochastically changing the type of TF beads every 10,000 timesteps
(equivalently, every 100 Brownian times), with probabilities such that the
switching off rate is of « = 10773, or 0.017-0.17 s~ L. In simulations of the toy
model (Figs. 1-7 in the main text and Suppl. Figs. $1-54), the switching on rate
is equal to &; in chromosome 14/22 simulations (Fig. 8 in the main text and
Suppl. Fig. S5), it is equal to a/4. Consequently, in steady state the average
number of active and inactive proteins is equal in simulations of the toy model,
whereas the average number of inactive proteins is fourfold larger than that of
active proteins in chromosome 14/22 simulations.

For more details on simulations, see Supplementary Notes 1 and 3.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The datasets generated during and/or analysed during the current study have been
deposited in Edinburgh DataShare [https://doi.org/10.7488/ds/3110]. To compare the
predicted transcriptional activity of chromosome 14 outputted by our simulations with
experiments, we use GRO-seq data. For HUVECs, we use the datasets GEO:
GSM2486801, GSM2486802, GSM2486803. For hESCs, we use GEO: GSM1579367,
GSM1579368. Super-enhancer regions considered here are those identified in ref. °7, and
available in the dbSUPER database [http://asntech.org/dbsuper/].

Code availability

The code used for the simulation is LAMMPS, which is publicly available at https://
lammps.sandia.gov/. Custom codes written to analyse data are available from the
corresponding author upon request, or they can be downloaded from https://
git.ecdf.ed.ac.uk/dmarendu/omnigenomic-model (access can be requested from the
corresponding author).
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Supplementary Figure 1: Clusters form spontaneously, and nearby TU beads tend to be transcribed
more often. A. Clustering is driven by positive feedback (the “bridging-induced attraction”) [1, 2]. (i) Multivalent
TFs 1 and 2 (pink) bind reversibly to red TU beads; each blue dot represents many non-binding beads. No other
attractive forces between TFs or between TUs are specified. (ii) The two TFs bound; each stabilizes a loop. The
local concentration of red TUs in the dashed volume has now increased, so if pink TF 2 dissociates it is likely to
rebind to the same cluster (grey arrow); therefore, the cluster is likely to persist. (iii) The high local concentration
also drives cluster growth. Here, the cluster will catch red TU a and pink TF 3, as they diffuse through this local
region. (iv) Cluster growth continues due to this positive feedback until limited by the entropic costs of crowding
together ever more loops. B. Scatter plot where each point represents a TU bead, and the horizontal axis gives the
distance along the chain in beads to the nearest neighbouring TU. A strong anticorrelation with transcriptional
activity is evident. The positive feedback described in (A) ensures that the closer a TU is to another TU, the
higher the probability it will cluster and be transcriptionally active.
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tions in Fig. 3 in the main text. These are used to construct regulatory networks.
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Supplementary Figure 3: Transcriptional activity in a chain with closely-packed loops. Results of two
sets of simulations (> 800 simulations/condition) are compared; one set as Fig. 1 in the main text, in the other
the chain contains 32 consecutive and closely-packed permanent loops of size 30 0. A. Average transcriptional
activity for each TU in the looped set (magenta bars indicate values for TUs in loops, and magenta arcs loop
positions). B. Comparison between expression in wild-type and looped configuration for 31 TUs with significantly
different values in the two sets (p ~ 0.003; Students t-test). C. Regulatory network inferred from the matrix of
Pearson correlations between expression of TUs (as Fig. 3A in the main text). D. Change in Pearson correlation

between TUs due to introduction of loops.
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Supplementary Figure 4: Transcriptional activity in a heterochromatic chain with an euchromatic
island. Results from two sets of simulations (800 simulations/condition) are compared; one set as Fig. 1 in the
main text, in the other all non-TU beads are heterochromatic apart from those between bead 213 and 272 inclusive
(to represent a euchromatic island). A. Average transcriptional activity for each TU bead. Grey bars: values for
TUs in heterochromatin. B. Comparison of average transcriptional activity with respect to the wild-type for all
39 TUs; these all have significantly-different values in the two sets (p ~ 0.003; Students t-test). C. Regulatory
network inferred from the matrix of Pearson correlations between transcriptional activities of TUs (as Fig. 3A in
the main text). D. Change in Pearson correlation between TUs with respect to the wild-type.
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Supplementary Figure 5: Comparison of transcriptional activities of human chromosome 14 in HUVECs
determined using simulations (HMM model) and GRO-seq. A. Snapshot. (i) All beads on the chain
(TFs not shown, numbers refer to state numbers in HMM tracks in [3] used to color beads). (ii, iii) TU beads
and TFs corresponding to the configuration in (i). B. Comparison of transcriptional activities of red TUs in
simulations and GRO-seq (ranked from 0—100% and binned in quintiles). A scatter plot of unbinned ranks of beads
corresponding to SEs are superimposed (white circles). C. Transcription rate of SEs. For a given SE, the rate is
the average of all TUs in the SE region. We find 26 of 27 SEs have a higher-than-average expression/transcriptional

activity. Data correspond to 100 simulations.
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Supplementary Figure 6: Comparison between transcriptional activity patterns in GRO-seq, simu-
lations and RNA-seq. (i-iv). The three tracks on each of the panels correspond to GRO-seq (top track),
simulations (DHS model, middle track) and poly(A)+t RNA-seq (bottom track) for 4 regions of chromosome 14, in
HUVECs. To ensure the signals on the y axis have the same scale, we plot the rank of transcriptional activity of
DHS beads. The rank is computed over all DHS beads in chromosome 14; for GRO-seq and RNA-seq, we remove
data with no signal when computing ranks. The two tracks at the bottom of each panel correspond to the UCSC
gene track (without non-coding genes and splice variants), and to the chromatin HMM track [3] for HUVECs.
The RNA-seq dataset used was GEO: GSM2072428 [4]. The legend for the colours in chromatin HMM track is
as follows [3]: bright red = active promoter; light red = promoter flanking; purple = inactive promoter orange =
strong enhancer; yellow = weak enhancer; blue = CTCF /insulator; dark green = transcription; light green = low
activity; gray = polycomb repressed; light gray = heterochromatin.
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Supplementary Figure 7: GRO-seq data inversely correlate with distance to nearest DHS peak, and
the correlation varies genome-wide. A. Correlation between the distance to the nearest DHS peak and the
GRO-seq signal at DHS peaks genome-wide (ranked from 0 — 100%, then binned in quintiles and shown as a heat
map). The heat map shows there is a negative correlation between the two quantities (range in the colour map
reduced to highlight the pattern), analogously to the anti-correlation found in our simulations (see Fig. S1) and
main text. B. The plot shows the absolute value of the Spearman correlation, |r|, between GRO-seq and the
distance to the nearest DHS peak, for each chromosomes. The negative correlation is typically highly statistically
significant: p < 10712 for all chromosomes except 16, 17, 19, 22, for which p ~ 5 x 10712, 5 x 10~12, ~ 0.0007,
4 x 10~8 respectively. To compute the correlations, we coarse grain the GRO-seq data and DHS peaks into 1 kbp

segments.
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Supplementary Figure 8: Regulatory networks in chains representing fragments of human chromosome
14 in HUVECSs are highly connected. Networks are constructed and presented as for Fig. 3 in the main text;
they involve Pearson correlations between transcriptional activities of all TUs/red beads. To facilitate comparison
with results in Fig. 3 in the main text, four fragments of the chain representing chromosome 14 are selected that
have the same length as the 3 Mbp chain (Fig. 3 in the main text), and roughly the same density of TUs. (i) Dilute
conditions (volume fraction < 0.1%). Simulations (800 runs) involve a short 3 Mbp chain in a cube under the
dilute conditions used for the 3 Mbp fragment simulations (as Fig. 3 in the main text), but with beads coloured
using the HMM model (as Fig. 7 in the main text). Consequently, the statistical certainty associated with this
panel is inevitably higher than in the other panels as > 8-fold more runs are involved. (ii-vi) Confined conditions
(volume fraction ~ 14%). Simulations (100 runs) are conducted using the DHS and HMM models, and a string
representing the whole chromosome in an ellipsoid (as Fig. 7 in the main text, and Fig. S5). Networks in all panels
are highly connected. Comparison of panels (i) and (ii) — which allow comparison of the effects of confinement —
points to confinement increasing the number of distant positive correlations (as might be expected). Comparison
of panels (ii) and (iii) which allow comparison of the HMM and DHS models highlights the different patterns of
marks contained within the two models. Comparison of panels (ii)-(vi) shows different segments of the chromosome
have highly-connected components.
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Supplementary Figure 9: Node-degree distribution for transcriptional networks emerging from simula-
tions (HMM model, HSA14, HUVECSs). An edge between two nodes is drawn when the Pearson correlation
between corresponding TU beads is more than 0.35 in absolute value. A. Log-linear plot. The blue solid line is a
linear fit, corresponding to an exponentially decreasing node-degree distribution. B. Log-log plot. The green line
is a linear fit for intermediate node degree, corresponding to a power-law decay in the node-degree distribution
(expected for a scale-free network). The power-law fit is poorer than the exponential one in (A).
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Supplementary Figure 10: Change in transcriptional activity versus TU activity for DiGeorge deletion.
For each TU, we compute both the change in transcriptional activity in the chromosome 22 deletion studied in
Fig. 8 in the main text, as well as the average transcriptional activity in the wild-type and deletion. This scatter
plot shows that the change is larger for TUs with intermediate activity.
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Supplementary Figure 11: A pan-genomic model for transcriptional organisation and gene regulation.
(i) A region of the human genome is depicted with 12 segments (grey — heterochromatin, blue — open chromatin,
red — transcription unit). TFs (transcription factor — polymerizing complexes) are present at non-saturating
concentrations; they bind tightly to TUs 6 and 11, weakly to blue segments, and not to heterochromatin. All
other beads in the chain influence transcription of bead 6. They can be considered as eQTLs acting on bead 6,
with eQTL strength being indicated by curved arrows (red — up-regulation, grey — down-regulation; increasing
width/colour indicates increasing strength). (ii) The regulatory network centred just on bead 6. Straight lines
indicate interaction strength (colour code as i). (iii) The regulatory network of all 12 beads. Every bead has some
effect on the transcription of every other bead, which is consistent with GWAS results. (iv) Increasing TF copy-
number (as in reprogramming experiments [5]) simplifies both the network of bead 6, and the complete network.
Consequently, over-expressing the TF over-rides the regulatory network mediated by 3D structure, and allows the
coexisting trans-acting network envisioned by the omnigenic model to dominate.



Supplementary Note 1: Artificial chromatin fragment simulations

For the 3 Mbp chromatin fragment simulations, chains are made of 1000 beads (so
that each bead corresponds to 3 kbp). For the simulations shown, TUs were placed
at beads 2, 33, 49, 103, 105, 117, 129, 133, 146, 158, 233, 307, 316, 396, 404, 444,
457, 471, 508, 529, 584, 632, 645, 648, 661, 679, 685, 693, 718, 762, 795, 831, 886,
905, 907, 930, 931, 953, 979. Different simulations with different TU bead locations
(randomly scattered along the fibre with average distance between 10 and 40) give
qualitatively similar results, equivalent to the ones shown in the main text. The
linear TU density in our simulations (between on average one bead in 20 and one in
40, or between 0.025 and 0.1) encompasses the range relevant to human chromatin.
For instance, our whole chromosome simulations of HSA14 and HSA22 (see next
Section) correspond to an average TU density (equivalently, density of 3 kbp bead
corresponding to DHS peaks) of ~ 0.06 and ~ 0.04 respectively. The ratio between
the number of active TF's, n, over the number of TUs, N, which we consider vary
between 0.26 and 2.06, with most results presented for the former case. For this
case, TFs are not enough to saturate TUs, which is the realistic case (see next
section).

To start simulations, the chromatin fibre is initialised as a random walk, and pro-
teins are initialised at random position within the simulation box — a cube of size
1000, which means the system is dilute. To avoid bead overlap, we initially perform
a small number of steps with a soft potential between beads, and a harmonic bond
between neighbouring beads. We then equilibrate the system for 10* Brownian
times with repulsive (WCA) interactions between any pair of beads. Finally we
study the evolution of the system for 105 Brownian times (10° Brownian times for
Fig. 2 in the main text) once the attractive Lennard-Jones interactions between
chromatin beads and TFs are included in the potential.

The main parameter determining qualitative behaviour is the ratio n/N (number
of active TFs to number of TUs). The magnitude of the attractive interaction
between TFs and TUs and switching rate do not affect results qualitatively, pro-
vided the bridging-induced attraction drives clustering (i.e., we always get variable
TU activity, stochasticity at the single-cell level and pangenomic transcriptional
regulation dependent on 3D structure). The magnitude of low-affinity interactions,
the interaction range r., and the persistence length of the chromatin fibre all affect
transcriptional patterns and interactions quantitatively, but do not modify quali-
tative trends.

Supplementary Note 2: Transcriptional difference

To determine the difference between two sets of simulations in Figure 4 in the main
text, which we refer to as states (typically corresponding to two different parameter
sets), we define a transcriptional difference as follows. If there are N TU beads
in the polymer, let us call z; the expression (transcriptional activity, in %) of the



i-th TU bead in the first state, and 2 its expression in the second state. The
transcriptional difference between the two states is then

N

dr = | Y (2 — x:)°, (S1)

=1

which is the Euclidean distance between the two points {xy,--- ,zy} and {z}, -+, 2y
in their N-dimensional space.

Supplementary Note 3: Whole chromosome simulations

To simulate HSA 14 and HSA22 in a diploid GO HUVEC cell, the system is confined
into an ellipsoidal territory with aspect ratio chosen according to typical experi-
mental values [6, 7] (semiaxes were 22.240:34.240:41.800, or 0.67 pm:1.03 pm:1.25
pm, for HSA14; 17.390:26.770:32.680, or 0.52 pm:0.80 pm:0.98 pm, for HSA22).
Confinement is enforced by modifying the source code in LAMMPS to describe an
ellipsoidal indenter. This introduces a soft force towards the centre of the ellipsoid,
only if beads exit the confining ellipsoid. The magnitude of the confining force felt
by a bead at position vector (x,y, 2) is

f= Kg(592 (52)

for g > 0, where

6g/a = \/x2]a? + y2/b% + 22/c2 — 1 (S3)

where a, b and ¢ are the semiaxes (along z, y and z), and where we assume for
simplicity that the centre of the ellipsoid is in (x,y, 2) = (0,0,0). The constant K,
measures the stength of the confining force and is set to 10kgT /0% As a detail
we note that the confinement is modelled via an effective force, rather than via
an effective potential. Polymer size (in beads) for the simulated chromosomes are
35784 for HSA14, 17102 for wild-type HSA22, and 16250 for HSA22 with diGeorge
deletion (again, each bead corresponds to 3 kbp).

There are about 50000 — 60000 Pol IT molecules in a diploid cell [8], corresponding
to a ~ 2 nM concentration for a nucleoplasmic volume of ~ 520 ym?® (a spherical
nucleus of diameter 10 pm). FRAP shows that about a quarter of the Pol II
molecules exchanges rapidly [9] and are likely to be active at any time. To reflect
this, we consider 1700 and 813 TFs for HSA14 and HSA22 simulations respectively
(in HUVEC cells), with k.g = 4kon, = 0.001 75, so that 20% of these are active
on average at any time. As the number of TUs in our DHS model is respectively
2226 (HSA14) and 687 (HSA22), the value of n/N (ratio between average number
of TFs active at any time and number of TUs) is ~ 0.15 (HSA14) and ~ 0.24
(HSA22), similar to values considered in the toy model (see previous section).

Our DHS model is described in the main text. Our HMM model is based on
the HMM Broad chromatin track [3], which classifies chromatin segments into
15 different states using a hidden Markov model (HMM) applied to a range of



epigenetic marks (Suppl. Fig. S5). Here, states 1, 4, 5 — marking strong promoters
and enhancers — are colored red (strong binding), while states 9, 10, and 11 —
marking other transcribed regions — are blue (weak binding).

To start simulations, the chromatin fibre is again initialised as a random walk,
with soft potential used to avoid overlap. The resulting self-avoiding chain is con-
fined into the ellipsoidal territory quickly, analogous to what is done to create
fractal globule structures. We additionally equilibrated the system for 10* Brow-
nian times with repulsive (WCA) interactions between any pair of beads, before
turning on the protein-chromatin interactions (after which again we collect data for
10° Brownian times). While this protocol is not sufficient to reach equilibrium for
this long polymer [10], the fractal globule-like structure we choose for the initiali-
sation corresponds to the one normally associated with interphase chromatin [11].
Additionally, as transcriptional activity depends on cluster formation which is pre-
dominantly associated with local chromatin folding — a much faster process than
global folding [12] — we do not expect the initial condition to affect our conclu-
sions and results. For instance, the chromosome fragment simulations start from
an equilibrium configuration (see above), and the main results are qualitatively in
line with those of the whole-chromosome simulations.

Supplementary Note 4: Quantification of small-world-ness

To quantify small-world-ness of a network, we use one of the approaches described
in [13]. Thus, we create a number (typically 100) of randomised networks where
the same number of edges as in the original network are randomly assigned to a a
node pair. For both the original and the randomised network, we then compute: (i)
the average over nodes of the clustering coefficient [14], which measures how close
the neighbours of a node are to forming a clique, or a fully connected graph, and
(ii) the average shortest path between a node pair. We call the average clustering
coefficients v and 7,, for the original and a randomised network respectively, and
the average shortest path L and L,, for the original and a randomised network
respectively. The small-world-ness can then be defined as s = ﬁ@—ﬁ, where (-)
denote averaging over many randomised networks. A value of s > 1 signals a small-
world network. It should be noted that s can only computed with this definition
for connected networks, for which L and L, are well defined.

For the neworks in Fig. 3 of the main text, s ~ 1.90 for n = 10 and s ~ 2.94 for
n = 20 (other networks are not connected). For chromosome 14, s ~ 1.13 for the
DHS network (with threshold on absolute value of correlation 0.2 to draw an edge
between a pair of nodes), and s ~ 1.27 for the HMM network (with threshold 0.2).
For chromosome 22, s ~ 6.63 for the DHS networks and s ~ 2.29 for the HMM
network (both with threshold 0.2). Therefore, all the networks we can characterise
are small-world; it would be interesting to further probe changes in s with n/N and
with chromosome region, and to understand the reasons for any significant pattern
in the changes in s genome-wide.

Supplementary Note 5: Genomic datasets used

In this Section we detail the genomic datasets used to prepare inputs and compare



outputs in simulations of chromosome HSA 14 and 22 (Figs. 7, 8 in the main text
and Suppl. Fig. S5).

Inputs to color beads in the DHS model are based on DNase-hypersensitivity (DHS)
and H3K27ac peaks for HUVECs and hESCs, from ENCODE. Beads containing a
peak in H3K27ac but not in DHS are colored as low-affinity (blue) beads, and those
containing a peak in DHS are colored as high-affinity (red) beads. Beads which
did not contain any peak (either DHS or H3K27ac) are colored as non-binding
(gray). To color beads in the HMM model (HUVECSs only), we use the chromatin
states in [3] as detailed in Supplementary Note 3. Our simulations are based on
the GRCh37-hg19 genome assembly for inputs.

To compare the predicted transcriptional activity of chromosome 14 outputted by
our simulations with experiments, we use GRO-seq data. For HUVECs, we use the
datasets GEO: GSM2486801, GSM2486802, GSM2486803 [15]; for hESCs, we use
GEO: GSM1579367, GSM 1579368 [16]. Super-enhancer regions considered here are
those identified in [17], and available in the dbSUPER database, which includes

super-enhancers for human and mouse cells.
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