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The protists exhibit probably the most extravagant expression
of microtubule-containing structures found in any organism.
These structures — flagella, cilia, axostyles, spindles and a
veritable constellation of microtubule bundles and cortical
arrays — provide shape, form, motility, anchorage and
apparatuses for feeding. The cytoskeletal structures have a
precise order (i.e. size, position and number) that must be
replicated and segregated with fidelity at each division, some
components being inherited conservatively and others
semi-conservatively. Intriguingly, it is now apparent that much
of the high-order organisation, which was recognised and
described by light and electron microscopy during the last
century, is a reflection of molecular polarities set by assembly
of constituent proteins. Tubulins and microtubules lie at the
heart of this morphogenetic pattern.
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Abbreviations
dsRNA double-stranded RNA
PFR paraflagellar rod
RNAi RNA interference

Introduction: tubulins — αα to ηη
The proteins that form the microtubule wall — α and
β tubulin — were first characterised over 30 years ago. They
were found to assemble with an intrinsic polarity. Some
12 years ago, γ tubulin was first identified in Aspergillus
nidulans in a genetic screen. It was found to be located in
microtubule organising centres (MTOCs), where it plays an
essential role in initiating microtubule assembly [1]. These
three tubulins appear to be present in all eukaryotes and are
the only tubulins in some eukaryotes, indicating that this is
the minimal set required to define microtubule function in
these organisms. The importance of this ‘minimal set’ is
illustrated by the fact that the reduced genome of the
secondary endosymbiont of the cryptomonad Guillardia
theta contains α, β and γ tubulin genes [2].

Exciting recent developments, however, have shown that
eukaryotes contain other members of this tubulin super-
family: a further four members — δ, ε, ζ and η — were
identified in the past few years. Two of these, δ and η,
were identified by mutational genetics in Chlamydomonas [3]
and Paramecium [4••], respectively, and in both cases, the
mutants exhibited defective basal body functions.

Mutations in Chlamydomonas δ tubulin result in elevated
frequencies of uniflagellate cells, and flagellar basal bodies
possess doublet rather than triplet microtubules. In
Paramecium, η tubulin mutations exhibit basal body
duplication defects and reduction of the oral apparatus,
and a low percentage of basal bodies lack microtubules. 

The other tubulins, ε and ζ, were discovered by cloning
or genomic approaches in the African trypanosome
Trypanosoma brucei [5••], and ε tubulin was discovered
independently in mammalian cells [6••] by genomic
approaches. Immunolocalisation of ε tubulin in mammalian
cells shows it to be located to the centrosomal area. ζ tubulin
is located by immunofluorescence and immunoelectron
microscopy to the basal body region in trypanosomes and
at the centriolar region in some animal cells (S Vaughan,
K Gull, unpublished data).

This review covers the evolutionary biology, biochemistry
and function of the microtubule cytoskeleton. It considers
the impact of new gene silencing and RNA interference
technologies and points out the role of the microtubule
cytoskeleton in segregating cytoplasmic organelles of
eukaryotic microbes, and even of some intracellular
microbes themselves.

A distant relative: FtsZ
Expression of a microtubule cytoskeleton appears to be
the prerogative of eukaryotic cells. However, there exists a
prokaryotic protein that seems to be a distant relative of
tubulin. FtsZ is a prokaryotic cell division protein that can
form protofilament structures and has a weak sequence
homology to tubulin. Its recently revealed three-dimensional
structure emphasised the protein’s remarkable similarity to
tubulin [7,8]. The FtsZ superfamily exists in eubacteria,
some archaea and chloroplasts, and has also recently been
found in some mitochondria [9••]. Beech and colleagues
[9••] have described a nuclear-encoded homolog from
the alga Mallomonas splendens. This protein is most closely
related to the FtsZs of the α-proteobacteria but possesses
a mitochondrion-targeting signal and its location is suggestive
of a role in division of mitochondria in this alga. Thus, in
eubacteria, archaea and organelles, evidence is rapidly
emerging for internal ‘skeletons’ that have properties linked
to shape and division [10•,11]. 

Tubulin superfamily: evolutionary distribution
Drawing conclusions about the evolutionary distribution of
tubulins is difficult. There is a diverse dataset from
completed and partial genomes of a wide range of organisms.
Certain themes, however, are emerging and we have noted
in a previous paper the interesting evolutionary distribution
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of the new tubulins [5••]. So far, the ancient protozoan
T. brucei, whose genome sequencing project has not yet
been completed, has six tubulin superfamily members
(α, β, γ, δ, ε and ζ), whereas some organisms whose
genome sequencing projects have been completed contain
only the minimal set (α, β and γ). Organisms whose
genome sequencing projects have been completed include
Saccharomyces cerevisiae, Saccharomyces pombe, Arabidopsis,
Caenorhabditis elegans and Drosophila [1,12]. Individual
examples of the new tubulins are well represented within
the genome databases of a variety of protists and vertebrates
such as Xenopus. There is a reasonable correlation between
the occurrence of the new tubulins (δ, ε, ζ and η) and the
possession of a motile axoneme and triplet microtubule
basal bodies or centrioles [5••,12]. The yeasts and higher
plants are well known for their lack of such structures;
C. elegans lacks normal triplet microtubule basal bodies or
centrioles and, although there are reports of centrioles
with nine triplets in Drosophila, it is known that variations
occur in early development. Moreover, the position in
insects in general is unclear [13]. An important additional
aspect of the new tubulins may be to endow organisms
with probasal body or basal body (or procentriole/centriole)
structures linked to cell cycle patterns of duplication,
maturation and inheritance. 

Modifications of αα and ββ tubulin
Post-translational modifications to tubulin have long been
an enigmatic area of cell biology. They occur in many
eukaryotes but are not universal [14,15]. Their distribution
provides an intriguing evolutionary and cell biological
puzzle. Lysine 40 of α tubulin can be reversibly modified
by the addition of an acetyl group. Tetrahymena mutants
engineered to express an α tubulin unable to be acetylated
at lysine 40 showed no discernable phenotype, suggesting
that acetylated α tubulin is either not important under the
conditions tested or alternative events, or proteins can
supplant the normal function [16]. The α tubulin tyrosination
cycle involves the enzymatic removal of the carboxy-
terminal tyrosine residue and subsequent restoration via a
tubulin–tyrosine ligase [17]. The functional relevance is
not clear but the modification appears to be a reflection
of the length of time an individual molecule has spent in
a microtubule. Highly stable microtubules, therefore,
such as those of the trypanosome sub-pellicular array, are
generally detyrosinated [18]. 

The α and β tubulin carboxy termini can be modified by
polyglutamylation and polyglycylation, which are processes
involving the attachment of oligoglutamyl and oligoglycyl
side chains, respectively, to specific glutamate residues [15].
These side chains can be of considerable length. For
instance, axonemal tubulin in Paramecium is modified by
up to 34 glycyl residues, and the microtubules of T. brucei
are modified by 15 glutamyl residues per α tubulin subunit.

Polyglutamylation and polyglycylation are particularly
associated with stable microtubule structures such as the

axonemes of cilia and flagella. Tetrahymena has again
recently provided the vehicle for addressing the function
of one of these modifications. The microtubules of this
protozoan are formed from single α and β tubulin isotypes,
hence allowing molecular engineering of the proteins such
that they cannot accept the modifications. Modifying
the multiple polyglycylation sites in α tubulin produced
no observable phenotype [19]. In contrast, β tubulin polyg-
lycylation was essential and, moreover, reducing but not
eliminating polyglycylation of β tubulin resulted in slow
growth, reduced motility and cytokinesis defects. Other
experiments involving α or β chimeric tubulins suggested
that it is the level of polyglycylation modification that is
important. This is an elegant set of experiments but
intriguing puzzles remain. 

One conundrum is how to explain the evolutionary occurrence
of the modifications amongst protozoa that construct complex
microtubule cytoskeletons. A successful collaboration
between the Weber and Schneider labs [20–24] has
mapped the tubulins of three groups — the trichomonads
(Tritrichomonas mobilensis), the trypanosomatids (T. brucei)
and the diplomonads (Giardia lamblia) — using advanced
protein chemistry. Tubulin acetylation and polyglutamylation
are present in all three, whereas tyrosylation was only
detected in trypanosomes. Conversely, polyglycylation was
detected in the diplomonads and not in the other two
groups. Therefore, the ancient flagellate T. brucei
appears to be able to do without polyglycylation, whereas
the experimental evidence suggests it is essential in the
ciliate Tetrahymena. 

Functional analysis using microtubule inhibitors
Microtubule inhibitors have received some attention in
recent years as probes for determining function and as
avenues for possible therapeutic approaches [25]. During
the 1980s, our laboratory mapped the differential drug
sensitivity of protists and showed, by purification of tubulin
and its assembly in vitro, that their sensitivity profile was a
direct reflection of the drug activity against constituent
microtubules [26,27]. Colchicine and some benzimidazoles,
both potent inhibitors of mammalian tubulin polymerisation,
had only very slight effects on some protist tubulins.
Vinblastine and the maytansinoids are good inhibitors of
trypanosome tubulin polymerisation. We were also able to
show that the protozoa were sensitive to herbicides such
as trifluralin, oryzalin and their analogues that act via
microtubule inhibition [28] and, subsequently, these studies
were extended by others in the 1990s [29]. More recently,
Werbovetz and colleagues [30,31] have purified Leishmania
tubulin, studied its in vitro drug sensitivity profile and
related this to cellular effects of the inhibitors. The usefulness
of vinblastine in studies of cell cycle and cytokinesis in
Trypanosoma cruzi has also been demonstrated [32] . 

Bell [33] has rehearsed the usefulness of microtubule
inhibitors both in studies of malaria and as potential
antimalarials. As stated previously, we have long known
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that the selective toxicity of microtubule inhibitors on
protists and mammalian cells is a direct consequence of the
target tubulins. However, tubulin is a complex target for
antiprotozoal chemotherapy, given the difficulties of fast,
rational screens and the critical importance of the protein
in man. Although microtubule inhibitors have proven track
records as anticancer agents, enthusiasts for tubulin as a
target for antiprotozoal chemotherapy will have to establish
compounds with a very wide safety to efficacy margin. 

The usefulness of an expanding arsenal of microtubule
inhibitors as probes for microtubule functions in protozoal
parasites is, however, very clear. Use of microtubule
inhibitors [34] has defined the necessity of a small set of
microtubules (the f-MAST) in development of merozoites
of Plasmodium falciparum. In Toxoplasma, Shaw et al. [35]
used taxol and oryzalin to show that microtubules are
involved in daughter-cell budding of tachyzoites. Drug
treatments stopped parasite replication with extensive
morphological consequences. However, taken together
with other earlier studies in Toxoplasma, the phenotype of
the cell cycle block and terminal phenotypes suggests that
this and other protozoan parasites appear to vary from
higher eukaryotes in their cell-cycle checkpoints.
Evidence for this has come from studies on T. brucei, in
which cell phenotypes obtained using microtubule and
DNA inhibitors showed that cytokinesis is not dependent
on either mitosis or nuclear DNA synthesis [36,37]. Drug
treatments lead to the production of anucleate, flagellated
cytoplasts termed zoids. These studies emphasize the
importance of basal body segregation as an important factor
in defining structural and regulatory aspects of the cell
cycle and cytokinesis. 

Functional analysis using RNA interference
Cytoskeletal protein expression in trypanosomes can be
ablated by a gene silencing or RNA interference (RNAi)
approach. Both of the earliest, serendipitous applications
[38,39] produced distinct morphological phenotypes (stable
ablation of PFRA expression, leading to paralysed cells
and transient inhibition of α tubulin expression, leading to
misshapen ‘FAT’ cells). This RNAi technology has now
been developed to provide generic, inducible and heritable
production of hairpin double-stranded RNA (dsRNA) or
alternatively, dsRNA from two opposing promoters
[40••,41•,42••,43••]. 

The paraflagellar rod (PFR) is a massive structure that runs
alongside the axoneme in flagella of trypanosomes and
euglenoids and is composed of two major proteins, PFRA
and PFRC. When expression of PFRA dsRNA is induced
in trypanosomes, PFRA protein synthesis ceases, and cells
lack the normal PFR structure and are viable but paralysed
[38,40••]. Ablation of α tubulin expression in T. brucei is
obviously lethal. However, the early phenotype showed
that lowering the α tubulin content of the cell dramatically
affected morphology [39]. The trypanosomes lost their
vermiform appearance and became spheroid, cytokinesis

failed, and the trypanosomes exhibited abnormalities in
their microtubule arrays. A recent study has confirmed
these phenotypes but a γ tubulin RNAi construct produced
no phenotype [41•]. Using a slightly different approach
and an inducible RNAi system, we have been able to show
that γ tubulin is essential in T. brucei and the mutant has
major abnormalities in motility and cytokinesis (P McKean,
K Gull, unpublished data). This result extends a previous
study on Paramecium that shows that basal body duplication
requires γ tubulin. Interrogation of protein function in
Paramecium is achievable by a post-transcriptional gene-
silencing phenomenon that bears similarities to the RNAi
approach [44]. Even though there is still doubt that RNAi
technologies will work in every context, they offer an
exciting opportunity to reveal cellular functions of proteins
in a range of protists. 

Mitochondrial, plastid and parasite segregation:
the hitchhikers guide
A number of protists contain single-copy, genome-containing
organelles whose replication and segregation are intimately
associated with nuclear and/or cytoplasmic events in the
cell cycle. These organelles attach to the unique centrosome
or flagellar basal body to achieve and ensure division and
fidelity of segregation — a little like hitchhiking. Given that
unique MTOCs have precise duplication and segregation
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Figure 1

Mitochondrial genome segregation in trypanosomes occurs via
attachment of the mitochondrion and the kinetoplast to the flagellum
basal bodies [45]. (a) Electron micrograph of Crithidia showing the
filaments of the attachment complex joining kinetoplast, mitochondrial
membranes and basal body [46]. (b) A cartoon of T. brucei in the early
stage of the cell cycle, showing the position of the mitochondrion and
kinetoplast close to the flagellum basal body. (c) A cartoon of T. brucei
in the mitotic stage of the cell cycle, showing segregation of the
mitochondrion and kinetoplast by the moving apart of the old and new
flagellar basal bodies [45,46].
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patterns in the cell cycle, the organelles hitch a ride and
ensure their own segregation fidelity. In trypanosomes, the
mass of mitochondrial DNA in the kinetoplast of the
single mitochondrion is attached by fibers to the inner
mitochondrial membrane and then by other fibers to the
flagellum basal body (Figure 1). Robinson and Gull [45,46]
were able to show that segregation of this mitochondrion
and its genome was accomplished by the moving apart of
the basal bodies of the old and new flagella (Figure 1).
Recently, Striepen et al. [47••] studied how the apicoplast
of Toxoplasma duplicates and segregates. The apicoplast of
Toxoplasma and Plasmodium species is a fascinating, essential
organelle that contains a characteristic genome. The apicoplast
appears to be the remnant of a eukaryotic algal plastid that

was acquired by secondary endosymbiosis. In an elegant
series of experiments, these authors demonstrate that the
apicoplast is tightly associated with the centrosome and, by
this association, uses the mitotic apparatus for segregation,
each end of the dividing apicoplast being associated with
the centrosome at each mitotic pole (Figure 2). 

This hitchhiking approach to ensuring fidelity of segregation
appears to be deeply embedded in the cell biology of
organelles of ancient endosymbiotic origin. Moreover, this
hitchhiking approach is also used by intracellular parasites
[48] to ensure segregation and therefore vertical transmission
to daughter host cells. It is likely that both Theileria parva,
microsporidial parasites and bacteria harboured in the cells
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Figure 2

Division of the apicoplast in Toxoplasma is
achieved by attachment to the centrosomal
area. (a) The ends of the dividing Toxoplasma
apicoplast are associated with the cell
centrosomes. The apicoplast is stained green
by immunofluorescence of a tagged protein
and the centrosomes red by
immunolocalisation of centrin. (b) A cartoon
of division of the apicoplast (green)
associated with the centrosome (red
cylinders) duplication cycle. In stage 2, the
apicoplast DNA (blue) has replicated and is
associated with the centrioles, which locate
to the poles of the mitotic spindle at stage 3.
Later, movements of the centrosome
segregate the apicoplast and the daughter
nuclei (dark grey) into the budding daughter
parasites. See [47•• ] for details. 
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of Drosophila and other organisms use this mechanism.
One can predict that a unifying cell biology underlies the
mechanism of interaction of genome-containing organelles
and intracellular parasites or symbionts with cytoplasmic or
spindle microtubules, or basal bodies or centrosomes.

Conclusions
Defining the diversity and structural complexities of the
microtubule cytoskeletons of eukaryotic microbes was a
cottage industry that boomed in the 1960s and 1970s and
continues today. The high level order found in these
microbial cytoskeletons is an important feature. However,
this mapping of the cellular architectural landscape now
provides a fascinating data set against which the functions
and evolutionary relationships of the structures can be
questioned and interpreted. Advances in microbial cell
biology and information from the genome projects have
combined to reveal many of the constituent proteins.
New gene silencing technologies are enabling real
insights to assembly mechanisms and novel functions of
the microtubule arrays. We are poised to learn much more
about ‘how to build a cell’, and also much more about the
important role of the cytoskeleton in the evolution of
microbial cell form.
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