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Partitioning of Large and Minichromosomes
in Trypanosoma brucei
Klaus Ersfeld* and Keith Gull

The Trypanosoma brucei nuclear genome contains about 100 minichromosomes of
between 50 to 150 kilobases and about 20 chromosomes of 0.2 to 6 megabase pairs.
Minichromosomes contain nontranscribed copies of variant surface glycoprotein ( VSG)
genes and are thought to expand the VSG gene pool. Varying VSG expression allows
the parasite to avoid elimination by the host immune system. The mechanism of inher-
itance of T. brucei chromosomes was investigated by in situ hybridization in combination
with immunofluorescence. The minichromosome population segregated with precision,
by association with the central intranuclear mitotic spindle. However, their positional
dynamics differed from that of the large chromosomes, which were partitioned by
kinetochore microtubules.

Trypanosoma brucei is a flagellated proto-
zoan parasite that separated from the eu-
karyotic lineage very early in the evolution
of eukaryotes (1, 2). The extracellular par-
asite survives in the bloodstream of the host
by periodically changing its VSG coat, a
process known as antigenic variation (3).
VSG genes, which are the only known open
reading frames on the 100 or so minichro-

mosomes of T. brucei, are transcriptionally
inactive (4–8). Minichromosomes are
thought to increase the repertoire of VSG
genes, which can be transposed to expres-
sion sites on the larger chromosomes (9).

In eukaryotic cells, chromosomes are typ-
ically segregated by association with a bipo-
lar mitotic spindle. This ensures an almost
perfect mechanism to faithfully segregate
chromosomes during cell division. Although
there is an intranuclear mitotic spindle in T.
brucei, indirect evidence argues against a
microtubule-dependent segregation mecha-
nism for at least part of the genome. Elec-
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tron microscopic (EM) studies of dividing
T. brucei nuclei indicate that the mitotic
spindle contains insufficient microtubules to
provide a conventional centromere-micro-
tubule interaction for all of the more than
100 chromosomes (2, 10). Rather, the chro-
matin of dividing T. brucei cells seems to be
closely associated with the nuclear envelope
(10, 11). In a more recent study, in situ
hybridization was used to demonstrate a pe-
ripheral localization of minichromosomes in
the nucleus of interphase cells of trypano-
somes (12).

Given genetic evidence of mitotic sta-
bility (13) yet uncertainty over the segrega-
tion mechanism, we addressed the question
of where chromosomes of procyclic T. bru-

cei are located during the cell cycle and how
their segregation is achieved. To visualize
spindle microtubules, we used a monoclonal
antibody (KMX) specific for b-tubulin (14,
15). Fluorescence in situ hybridization
(FISH) was used to visualize DNA segments
of individual chromosomes (16, 17). To
locate minichromosomes, we used a 177–
base pair (bp) repeat sequence (MC177) as
a probe (18). This sequence is specific for
minichromosomes and has been used previ-
ously to study their distribution in inter-
phase cells (12). To visualize a DNA seg-
ment on one of the larger chromosomes, we
chose the 5S ribosomal DNA (R5S) be-
cause this gene exists as a linear array of
hundreds of tandem repeats on one of the

chromosomes larger than 4 megabase pairs
(Mbp) (19, 20). The segregation pattern
observed for the chromosome carrying the
5S genes is likely to be representative of the
large chromosomes of T. brucei in general.
In support of this hypothesis, very similar
results were obtained with genomic DNA
clones covering about 150 kilobase pairs of
the tubulin locus located in the center of a
chromosome of about 1 Mbp (21). The
small size of even the largest chromosomes
of T. brucei and the size and position of the
target DNA sequences used for FISH ex-
clude trailing effects of those loci in relation
to potential centromeres, which have not
yet been identified.

Although chromosomes in trypano-
somes do not visibly condense, probably as
a result of their unusual histone composi-
tion (22), it is relatively easy to follow the
progression of mitosis using nuclear elonga-
tion and segregation of the mitochondrial
kinetoplast as markers (10, 23). Elongation
of the nucleus indicates the onset of mitosis.
The nucleolus does not disperse during mi-
tosis but elongates and acquires a dumbbell
shape before it splits into two entities pre-
ceding karyokinesis.

During interphase the minichromosomes
were located in small clusters distributed
asymmetrically around the periphery of the
nucleus (Fig. 1, A and D). As the cells
progressed toward M phase, a reorganization
occurred. During the transition from G2 to
M phase, the small minichromosome groups
started to aggregate into larger and fewer
clusters. Once the cell had clearly entered
mitosis, indicated by the appearance of a
small spindle, the minichromosomes con-
gressed into one mass in the center of the
nucleus (Fig. 1B). The mitotic spindle of
trypanosomes consists of a central array of
densely packed microtubules plus peripheral
microtubules; the latter might represent
pole-to-kinetochore microtubules because
they terminate in electron-dense structures
resembling the kinetochores described in
higher eukaryotes (10, 11). After the estab-
lishment of the spindle, the minichromo-
somal DNA split into two equal-sized clus-
ters that subsequently moved to the poles of
the spindle (Fig. 1, C and D). As the central
spindle elongated, the minichromosomes re-
mained at their polar position (Fig. 1E). Late
in mitosis the poles of the spindle were close
to the nuclear envelope with the minichro-
mosomes still attached. After the disassem-
bly of the spindle, shortly before nuclear
division, the minichromosomes congregated
close to the nuclear envelope. This distribu-
tion pattern could still be observed in cells
during and after cytokinesis; only later, dur-
ing S and G2 phases, did the clusters disin-
tegrate into smaller units (Fig. 1A, lower
cell). This explained the nonrandom spatial

A

B

C

D

E

Fig. 1. The distribution of minichromosomes during the cell division cycle. (A) In interphase, minichro-
mosomes were asymmetrically distributed near the nuclear periphery (see also right cell in D). (B) After
formation of a spindle, minichromosomes congregated in the nuclear center. (C to E) During
progression of mitosis, the minichromosomes separated into two entities and relocated to the poles
of the spindle. The minichromosomal signal is shown in red, the antibody to tubulin in green, and the
total DNA in blue. The third and fourth frame of each row represent the merged signals and the
phase-contrast image, respectively. The kinetoplasts as markers for cell cycle progression are
labeled by arrows (first row only). Bar, 10 mm.
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distribution of minichromosomes in G1 cells
and, to a lesser extent, in S phase (12).

The segregation of large chromosomes,
as deduced by the 5S ribosomal gene cluster
localization, followed a different pattern
(Figs. 2 and 3). Based on the analysis of
many cells, the two dots representing the
G1-phase diploid and, after S phase, the
tetraploid chromosome complement did
not exhibit a preferential localization with-
in the nucleus (Fig. 2A). After DNA repli-
cation the R5S signals were still visible as
two single dots because the sister chromo-
somes had not yet segregated (Fig. 2B). In
early mitosis, when the minichromosomes
were still congregated in the center of the
nucleus, the R5S signals occupied a position
near the nuclear periphery (Fig. 2B). Once
the minichromosomes were positioned at
the spindle poles, the R5S signals trailed
behind and relatively closer to the midpoint
of the spindle (Fig. 2C), suggesting different
velocities of polar movement. As mitosis
progressed, the R5S dots were frequently
found at the outer periphery of the central
spindle (Figs. 2, C and D, and 3, A and B),
consistent with the position of kinetochore-
like structures in spindles of dividing nuclei
at these stages seen in EM images (11, 24).
In late anaphase the R5S dots eventually
moved closer to the poles but never over-
lapped with the minichromosomal loca-
tions (Figs. 2D and 3C).

To demonstrate the dependence of
minichromosomal segregation on an intact
mitotic spindle, we treated trypanosomes
with the drug rhizoxin, which disassembles
microtubules (25). A concentration of 5 to
20 nM rhizoxin affects the integrity of the
spindle but leaves other microtubule-con-
taining structures, such as the subpellicular
cytoskeleton and the axoneme of the flagel-
lum, largely unaffected. Treatment of cells
for 4 hours with 5 nM rhizoxin resulted in
the formation of aberrant spindle morphol-
ogy in mitotic cells (Fig. 4A). Minichromo-
somes in these cells still associated with the
malformed spindles but failed to segregate
to the poles. Instead, they often formed
rod-shaped structures along bundles of mi-
crotubules. After treatment with 10 nM
rhizoxin for 4 hours a spindle was no longer
visible, but in some cells small tubulin-
containing structures could be detected at a
position corresponding to the poles of the
former spindle (Fig. 4B). Treatment with 20
nM rhizoxin prevented any reorganization
of minichromosomes in cells that, accord-
ing to the position of their kinetoplasts,
should have entered mitosis (Fig. 4C).

We propose the following model for the
mechanism of chromosome segregation in
T. brucei. Minichromosomes congregate in
the center of the nucleus at the onset of
mitosis. This aggregation may, or may not,

A

B

C

D

Fig. 2.Minichromosomes (red) and
large chromosomes (yellow) exhibit
different positional dynamics during
mitosis. (A) During interphase the
R5S signal was located in a central
position within the nucleus, where-
as minichromosomes were close to
the nuclear envelope. (B) On the
onset of mitosis minichromosomes
congregated in the center of the nu-
cleus, whereas the 5S signals were
near the periphery of the nucleus.
(C and D) As mitosis progressed,
minichromosomes became local-
ized at the spindle poles and the 5S
dots were closer to the center of the
spindle. The approximate position
of the spindle corresponds to the
black exclusion zone between the
DNA (blue) and by the dark struc-
ture inside the nucleus in the corre-
sponding phase-contrast images,
which is caused by the spindle and
the persistent nucleolus. Bar, 10
mm.

A

B

C

Fig. 3. The localization of a large chromosome during mitosis. (A and B) In early stages of anaphase the
5S ribosomal gene signal (yellow) was located outside the central spindle (green). (C) In late anaphase,
shortly before karyokinesis, the dots were much closer to the spindle poles. Phase-contrast images are
shown on the far right. Bar, 10 mm.

A

B

C

Fig. 4. The effect of the
anti-microtubule drug rhi-
zoxin on the segrega-
tion of minichromosomes
(color designation as in
Fig. 1). (A) Rhizoxin (5
nM) still allowed a small
spindle to form but pre-
vented the polar organi-
zation of minichromo-
somes; they remained
distributed alongside the
entire spindle. (B) At 10
nM the drug prevented
spindle formation but left
two small structures.
Minichromosomes colo-
calized with these struc-
tures, which were inter-
preted as spindle pole
remnants. (C) Rhizoxin
(20 nM) inhibited spin-
dle formation complete-
ly and prevented minichromosomes from reorganizing in the nuclear center at the onset of mitosis.
The interkinetoplast distance (the two DAPI-stained dots) indicated that the cell should have entered
mitosis by this time. Bar, 10 mm.
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be preceded by a condensation of the
chromosomes. After association with the
emerging central spindle, they separate
into two clusters that move to opposite
spindle poles. They remain at the spindle
poles during spindle elongation until they
are in close proximity to the nuclear en-
velope. Their asymmetrical distribution
within the nucleus is maintained after
spindle disassembly until late S phase
when they are distributed almost randomly
near the nuclear envelope. As the ploidy is
uncertain and individual minichromo-
somes cannot be visualized owing to the
lack of large enough specific target DNA
sequences, it is not clear whether there is
faithful segregation of each minichromo-
some. However, detailed microscopic
analysis of many cells (.100) showed that
the minichromosomal clusters segregated
on the spindle and inherited by each
daughter cell were of equivalent size, in-
dicating a precise segregation mechanism.

The existence of a highly coordinated
segregation mechanism for minichromo-
somes suggests that they play an important
role in the biology of this parasite. In
addition, owing to their small size,
minichromosomes may serve as an excel-
lent model for the study of mitotic segre-
gation, particularly with respect to the
evolution of DNA partition mechanisms.
The diploid large chromosomes, as exem-
plified by the chromosome harboring the
5S ribosomal gene, are likely segregated by
peripheral pole-to-kinetochore microtu-
bules. There is, however, an intriguing
discrepancy between the number of large
chromosomes, estimated to be at least 20
for the diploid set (4, 21), and the number
of kinetochore-like structures, estimated
to be approximately 10 (11, 24).
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Continuous in Vitro Evolution of
Catalytic Function

Martin C. Wright and Gerald F. Joyce*

A population of RNA molecules that catalyze the template-directed ligation of RNA
substrates was made to evolve in a continuous manner in the test tube. A simple serial
transfer procedure was used to achieve approximately 300 successive rounds of ca-
talysis and selective amplification in 52 hours. During this time, the population size was
maintained against an overall dilution of 3 3 10298. Both the catalytic rate and ampli-
fication rate of the RNAs improved substantially as a consequence of mutations that
accumulated during the evolution process. Continuous in vitro evolution makes it pos-
sible to maintain laboratory “cultures” of catalytic molecules that can be perpetuated
indefinitely.

The principle of Darwinian evolution is
applicable in vitro when a population of
informational macromolecules is subjected
to repeated rounds of selective amplifica-
tion and mutation. An earlier extracellular
Darwinian evolution experiment was done
with variants of Qb bacteriophage genomic
RNA that were amplified on the basis of

their ability to serve as a substrate for the
Qb replicase protein (1). Evolution was
made to occur in a continuous manner by
serial transfer of the RNAs to successive
reaction vessels. In recent years, in vitro
evolution procedures have been generalized
to encompass almost any nucleic acid mol-
ecule, including those that have catalytic
function (2). Unlike the Qb evolution ex-
periments, however, the evolution of cata-
lytic function has been carried out in a
stepwise rather than continuous fashion.
Stepwise evolution requires intervention by
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