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A unified-field theory
of genome organization and gene regulation

Giuseppe Negro,1,2 Massimiliano Semeraro,2 Peter R. Cook,3,* and Davide Marenduzzo1,4,*
SUMMARY

Our aim is to predict how often genic and non-genic promoters fire within a cell. We first review a parsi-
monious pan-genomic model for genome organization and gene regulation, where transcription rate is
determined by proximity in 3D space of promoters to clusters containing appropriate factors and RNA
polymerases. This model reconciles conflicting results indicating that regulatory mammalian networks
are both simple (as over-expressing just 4 transcription factors switches cell state) and complex (as
genome-wide association studies show phenotypes like cell type are determined by thousands of loci
rarely encoding such factors). We then present 3D polymer simulations, and a proximity formula based
on our biological model that enables prediction of transcriptional activities of all promoters in three hu-
man cell types. This simple fitting-free formula contains just one variable (distance on the genetic map
to the nearest active promoter), and we suggest it can in principle be applied to any organism.

INTRODUCTION

Our ultimate aim in this work is to predict the rate of transcription of any promoter in a given cell type. To this end, we first briefly review some

key principles underlying transcriptional initiation, and a biological model based on these principles. We then present results of 3D polymer

model simulations based on this model and derive a simple formula enabling prediction of the probability that a promoter might fire, which

constitutes the main result of this work. We also compare results obtained using this formula with those obtained from polymer simulations

and experiments.

Note that in this work we will use the term promoter to describe a motif governing transcriptional initiation irrespective of whether the

resulting transcript is an mRNA, enhancer RNA (eRNA), or other non-protein-coding RNA; consequently, there are many more non-genic

promoters than genic ones in man.1 When we use the term promoter, we will also assume this is active or potentially active in that cell

type (as many are not active continuously and/or active in one cell type but inactive in another).

Gene regulation: Three possible mechanisms, and two elephants in the room

A gene might be transcribed differently in two different cells in the same organism for three main reasons (Figure S1A). First, covalent struc-

tures of their DNA might differ. For example, cytosines at the 50 ends of many human genes become methylated during development, and

bases in immunoglobulin genes are shuffled during B cell maturation. However, most genes in most organisms in most cell states have similar

covalent structures, so our focus on universal mechanisms means this possibility is not considered further. If covalent structures are identical,

one gene might behave differently because it binds an activator or repressor, or it adopts a different 3D structure. We will argue interplay

between the last two mechanisms self-organizes genomes2 and regulates activity.

Results of two powerful approaches dominate current thinking about gene regulation (Figure S1B). Yamanaka’s experiment points to a

major role for transcription factors (TFs); over-expressing just four (Oct4, Sox2, c-Myc, and Klf4) converts mouse fibroblasts into a distinct

cell type—induced pluripotent stem cells (iPSCs).3 Results from genome-wide association studies (GWASs) paint a very different picture.

GWAS allows quantitative trait loci (QTLs) affecting any complex phenotype like the fibroblast or stem-cell state to be ranked; the sub-set

influencing mRNA levels (and so transcription rates) are called expression QTLs (eQTLs) that are ordered according to the levels of poly(A)+

RNAdetermined by sequencing (RNA-seq).4 GWASapplied inman broughtmany surprises.5,6 First, QTLs are numerous andwidely scattered,

with both positive and negative effects that are individually modest. Second, QTLs rarely map to genes encoding TFs or even proteins; for

example, most eQTLs are single-nucleotide polymorphisms (SNPs) in enhancers.7–9 Enhancers were originally defined as elements increasing

transcription independently of orientation and position but have since been defined in many other ways.10,11 We will adopt a definition used

by FANTOM (Functional Annotation of the Mouse/Mammalian Genome) that sees them just as an active non-genic promoters yielding eR-

NAs rather than mRNAs.10 Third, one gene is typically affected by many eQTLs/enhancers, and one eQTL/enhancer can target many genes
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2Dipartimento Interateneo di Fisica, Università degli Studi di Bari and INFN, Sezione di Bari, Via Amendola 173, I-70126 Bari, Italy
3Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
4Lead contact
*Correspondence: peter.cook@path.ox.ac.uk (P.R.C.), dmarendu@ph.ed.ac.uk (D.M.)
https://doi.org/10.1016/j.isci.2024.111218

iScience 27, 111218, December 20, 2024 ª 2024 The Author(s). Published by Elsevier Inc.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1

mailto:peter.cook@path.ox.ac.uk
mailto:dmarendu@ph.ed.ac.uk
https://doi.org/10.1016/j.isci.2024.111218
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2024.111218&domain=pdf
http://creativecommons.org/licenses/by/4.0/


ll
OPEN ACCESS

iScience
Article
that are often functionally related.7–9,11–13 Fourth, Hi-C (a high-throughput variant of 3C, chromosome conformation capture) shows eQTLs

often physically contact their target genes,13–15 which points to contact (and so 3D conformation) playing a direct regulatory role.

Unfortunately, molecular mechanisms underlying eQTL and enhancer action are ill-understood, and corresponding models are compli-

cated.1,6,11,13 For example, applying the omnigenicmodel6 to an eQTLwould see an SNP altering activity of an enhancer with a consequential

effect on transcription of the enhancer’s target gene (which is rarely the ultimate eQTL target). Then, once themRNA of the enhancer’s target

is translated, the resulting protein would rebalance regulatory networks in ways that depend on that target protein’s role (e.g., by influencing

signaling, sub-cellular localization, ATP levels, etc.). Finally, metabolic changes would percolate back in complex ways to modify transcription

of the ultimate eQTL target. Note that no attempt is made in this model to explain why an eQTL might contact its ultimate target gene.

We summarize this section as follows. Results of two powerful experiments yield unreconciled findings: Yamanaka’s result suggests reg-

ulatory networks are simple (just 4 TFs switch cell fate), but GWAS points to thousands of loci that rarely encode TFs tortuously determining

phenotypes in complex post-transcriptional ways. We accept that regulation is multi-layered, but here our focus will be at the level of tran-

scriptional initiation.

Genome organization: DNA loops and the bridging-induced attraction

DNA loops are major building blocks of chromosomes.2 Those seen first in bacterial and human nucleoids, plus bacterial operons like ara and

lac, were all anchored by the transcription machinery and had contour lengths of 20–200,000 bp.16–19 Modern techniques like Hi-C20

micro-C,21–23 and GAM (genome architecture mapping)24 confirm the presence of polymerases and TFs at anchor points. Note, however,

that Hi-C misses many loops shorter than �200,000 bp25,26 and underestimates the presence of the transcription machinery at anchors.23,27

Most anchors in archaea and plants are also transcribed.28–31

Loops are stabilized in four knownways. The classical mechanism involves dimerizing TFs; two TFs bind to nearby cognate sites on DNA to

become trapped transiently in a local volume, and this increases the chances that they collide, dimerize, and anchor a loop32 (Figure 1A). Sec-

ond, CTCF-cohesin complexes stabilize many mammalian loops20,33 (Figure S2A). While CTCF is a TF, it is not encoded by plants or bacteria,

and due to our focus on universal mechanisms we only discuss it in passing. In contrast, cohesin is conserved and anchors many long loops in

addition to the ones mainly discussed here,34,35 but it plays only a subtle role in human transcriptional regulation as knocking it down affects

levels of only 23% expressed mRNAs and 1% unexpressed ones.36 Third, many components of the transcription machinery also possess low-

complexity disordered domains37 (including >80% mammalian TFs plus the catalytic sub-unit of RNA polymerase II) that can coacervate into

liquid droplets; then, phase separation involving components anchored at different sites can stabilize loops38,39 (Figure S2B). Finally, the

depletion attraction is another force that arises without energy input between large particles (e.g., DNA-bound polymerases) in a solution

of smaller ones (e.g., nucleoplasmic proteins) that are sterically excluded from spaces between the larger ones; its strength is in the goldilocks

zone—strong enough to overcome the cost of bending DNA, yet insufficient to ensure permanent contact40,41 (Figure S2C). With the excep-

tion of cohesin, all known looping mechanisms involve the transcription machinery.

We now describe another mechanism that clusters many loops. Consider the polymer model illustrated in Figure 1B, where red spheres

(representing TFs complexed with RNA polymerase II, and which we call TF:pols) bind reversibly to pink beads (representing promoters and

associated transcription units, TUs) scattered along a string of non-binding42,43 (or weakly binding) blue beads (the rest of a chromosome).

This model (and all subsequent ones that will be described) is based on a few assumptions and is fitting free, in contrast tomost models in the

field. Strikingly, Brownian dynamics simulations show that bound TF:pols spontaneously cluster to generate many associated loops through

an emergent process described as a bridging-induced attraction (bridges create an apparent attraction). Forming such bridges inevitably

increases the local concentration of binding sites, and this triggers a positive feedback mechanism that operates without energy input to re-

cruit more TF:pol complexes. When two different kinds of TF:pol complex (red and green) are simulated, distinct red and green clusters

emerge (Figure 1C). Additionally, if beads in a string representing human chromosome 19 in GM12878 cells are colored according to whether

regions are active or inactive, loops, topologically-associating domains (TADs), and A/B compartments all appear without the need to invoke

additional mechanisms (Figure S3).

Interplay between genome organization and transcription: A pan-genomic model

Transcription can be linked to structure if one reasonably assumes that a TU is transcribedwhen it binds a TF:pol.44 Then, polymer simulations

yield patterns of transcriptional activity down chromosomes that are correlated in a statistically significant way with those obtained with

GRO-seq (global run-on sequencing)—arguably the gold-standard.4,45 Moreover, clusters resemble centers of activity seen experimentally

and are called phase-separated condensates/drops/pockets,38,46,47 hubs,2,48–51 clusters,52 super-enhancer (SE) clusters,53 and transcription

factories.54

The bridging-induced attraction naturally yields complex interaction networks.44 To seewhy, consider the structure at the top of Figure 2Ai

where TU bead 3 is bound to, and transcribed by, a TF:pol. When the TF:pol terminates, 3 is free to detach and diffuse across to bind to the

right-hand cluster. Later, one (or both) of these clusters may disappear, and 3may visit other clusters when they appear. Consequently, 3 con-

tacts many other pink TUs over time to be co-transcribed with them. A regulatory network55,56 can then be built (Figure 2Aii) in which each TU

is represented by a node, and pairs of nodes with positively correlated activities are joined by black edges and anti-correlated ones by gray

edges. Networks derived in this way from polymer simulations of human chromosome 14 in HUVECs (human umbilical vein endothelial cells)

are complex (Figure 2Bi, left). Typically, black edges connect co-transcribed TUs in clusters that sequester TF:pols to reduce the likelihood

that other clusters form elsewhere (giving gray edges). Strikingly, most nodes are highly connected (e.g., 63 of 67 TU beads in Figure 2Bi are in
2 iScience 27, 111218, December 20, 2024
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Figure 1. Local concentrations drive looping and clustering

Strings of non-binding blue dots: DNA. Pink spheres in the string: promoters/transcription units (TUs). Red and green spheres: TFs or TF:pols able to bind

reversibly to R2 TUs simultaneously.

(A) Classical model for TF-induced looping.32 TF concentration = 1 nM, dimerization equilibrium constant = 10�7 M (both typical values). Without DNA, <1% TFs

dimerize. When TFs bind to promoters 10 kbp apart on DNA, they often collide to give a loop. This loop tends to persist as the local concentration (dashed circle)

promotes TF rebinding (gray arrow); consequently �67% TFs are now dimeric.

(B) Clustering due to the bridging-induced attraction.42 TF:pols a, b, and c bind reversibly to TU beads 1–5. No other attractive forces between TF:pols or

between TU beads are specified. (i) a and b will bind. (ii) When b dissociates, the local concentration of binding sites enhances its chances of rebinding (gray

arrow). (iii) If 6 and c diffuse through the local concentration of factors, both are likely to be (iv) caught. Positive feedback (capture plus little loss) now leads

to �10 TF:pols/cluster until entropic crowding costs limit further growth.

(C) Clusters of different types.42 (i) Red TF:pols bind reversibly to pink TU beads, and green TF:pols to light-green ones. (ii) Positive feedback drives formation of

red and green clusters in different places in 3D space, as pink and light green TUs are in different places in 1D sequence space.

ll
OPEN ACCESS

iScience
Article
the largest connected component, left), and small-world (most nodes are inter-connected by few edges). Moreover, pink and green TU beads

in Figure 1C each form their own distinct small-world networks.

To model eQTL action, TF:pol binding to each of 39 TU beads in a toy string of 1,000 beads (each representing 3 kbp) was abrogated in

turn.44 Each knock-out rewires the whole network in a distinct way; remarkably, activities of about half the other TUs both near and far away in

sequence space change slightly, as the network retains its small-world character. Moreover, introducing non-binding heterochromatin, bind-

ing euchromatin, and permanent loops like those anchored by cohesin rewires networks in complex and difficult-to-predict ways. All these

results fit comfortably with those seen byGWAS. Significantly, they result from co-transcriptional events that would act in addition to the post-

transcriptional ones envisaged by the omnigenic model.
iScience 27, 111218, December 20, 2024 3
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Figure 2. Reconciling results from Yamanaka and GWAS

(A) Regulatory networks.44 (i) During a Brownian dynamics simulation, 3 is in a cluster with 1 and 2 and co-transcribedwith them as all lie close to TF:pols (large red

spheres). 3 now detaches from the cluster and diffuses across to initiate in the right-hand cluster so its activity now positively correlates with those of 4 and 5. Over

time, TU beads start/stop being transcribed many times and visit other clusters that appear/disappear. (ii) Contact and activity networks characterizing the two

structures. Black edges indicate colocalization and positively correlated activity, with the time average in the middle.

(B) Effect of TF copy number on networks seen in polymer simulations (time average given by 3 Mbp segment of HSA14 in HUVECs containing appropriately

positioned TU beads, each representing 3 kbp; for data, see SI). With the in vivo TF concentration (1x TFs), many TU beads contact other TU beads and have

positively correlated activities. However, TF:pols are in short supply, and binding to some TU beads necessarily decreases binding to others; this yields

negatively correlated activities indicated by gray edges. The network is small-world with 63 of the 67 TU beads in the largest connected network – consistent

with GWAS results. Increasing the TF concentration 2.4x simplifies the network, which we argue allows Yamanaka’s experiment to succeed.
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These results lead to apan-genomicmodel that allows reconciliation of the two conflicting views of regulation (Figure S1B). Thus far, TF:pol

copy-number described in polymer simulations reflects that found in vivo, so TU beads do not become saturated. However, increasing copy-

number dramatically simplifies networks (Figure 2B). We suggest this happens in Yamanaka’s experiment: over-expression allows the system

to escape from the complex small-world networks revealed by GWAS, so just 4 TUs can play their decisive roles.44

We summarize thus far as follows. First, general arguments indicate that differential binding of TFs and/or folding underlie differential tran-

scription. Second, loops are anchoredbymechanisms usually involving the transcriptionalmachinery. Third, binding of thismachinery triggers

the bridging-induced attraction and clustering of TFs, polymerases, and chromatin loops. Fourth, small-world regulatory networks then

emerge spontaneously from the spatiotemporal dynamics of the system. Given these basic mechanisms, evolution has a choice: life forms

can either spend energy to prevent such clusters and networks forming, or they can exploit these gifts of physics. We speculate the latter

happened. Possibly, the depletion attraction clustered primordial polymerases transcribing DNA. Then, when cohesins evolved they stabi-

lized additional loops, and—once TFs appeared—the bridging-induced attraction inevitably reinforced clustering and ensured that different

clusters specialized in transcribing different gene sets, with disorderedmotifs strengthening clustering by enhancing phase-separation. From

now on we call these emergent clusters factories—the first name for focal sites of transcription.54

RESULTS
A minimal model for transcriptional initiation

In car factories, local concentrations of engines and tires facilitate efficient auto production. In transcription factories, analogous concentra-

tions underlie efficient RNA production (e.g., the concentration of human RNA polymerase II in factories is�1,000-fold higher than in the sol-

uble pool). Consequently, the law ofmass action ensures that essentially all transcription occurs in factories—as seen experimentally.54 Just as
4 iScience 27, 111218, December 20, 2024
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Figure 3. Models for transcription and gene regulation

(A) Transcription cycles. The conventional model (left) has a polymerase (pol) binding to a promoter (red circle), and tracking (pink arrow) down the template;

however, the resulting transcript is inevitably entwined about the helical template once for every 10 bp transcribed, and there is no known mechanism for

untwining it. The alternative (right) has a polymerase binding and reeling in (blue arrow) the template as it makes an un-entwined transcript (screwing a bolt

through a fixed nut provides an analogy).

(B) Initiation frequency depends on distance in 3D space to a factory. Here, f is more likely to diffuse to the factory and fire than g. e also acts as an enhancer of

f activity by tethering f close to the factory.

(C) Feynman-like diagrams depicting two interactions dominating firing of promoter r. Promoters: p-t. Factory: large red sphere. (i) Binding of r to a factory. (ii)

Forming a loop with the nearest active promoter on the genetic map. In the 1-state model, all active promoters have identical affinities for the factory. When the

promoter nearest to r is transcribed (i.e., s), r becomes tethered close to a factory and so is likely to be transcribed. In the 3-state model, affinity of active genic

promoter q> active non-genic ones (r, s, t) > the other promoter (p). The 2nd Feinman diagram now involves the loop to the nearest genic promoter (and never to

a non-genic or other one). Consequently, r is often tethered close to a factory transcribing q – and so often visits this factory to be transcribed.
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some car factories make Toyotas and other Teslas, the bridging-induced attraction drives formation of different transcription factories (Fig-

ure 1C) that might make, for example, inflammatory or olfactory-receptor transcripts.49,52,57

In all models for transcription, initiation frequency depends on how often promoters, polymerases, and TFs interact. In ours, there are two

more key features. One concerns relative movement. The traditional model sees an active polymerase tracking down its template (Figures 3A

and S4). This idea stems from the perception by early biochemists of the relative size of a polymerase and its template—the smallest object

(the enzyme) would move. But does it? We suggest it does not. Rather, it uses the energy released from the hydrolysis of nucleotide triphos-

phates to reel in its template—which has a much smaller cross-sectional area than what we now know to be a huge polymerizing complex,38

and so the likeliest to move end on through the viscous milieu of a cell. Evidence for this has been reviewed,54,57 and we here discuss one

example chosen because it is often cited as the best (and to our knowledge only) evidence for the traditional model—the iconic images

of Miller spreads that show polymerases caught in the act of making RNA. In these static images, each transcript appears as an extended

branch in aChristmas tree58 which it is assumed is made by amoving enzyme. However, a polymerase tracking along a helical path generates

a transcript entwined about the template once for every 10 bp transcribed (Figure 3A, bottom left), and not the extended and un-entwined

branch seen in a spread. But if the template rotates as it is reeled in by a fixed polymerase, no entwinements result—as seen in the iconic

images (Figure 3A bottom right; Figure S5, Video 1). Therefore, contrary to widespread belief, we suggest these spreads (and equivalent

ones of lampbrush loops; Figure S5) provide good evidence that active polymerases do not track.
iScience 27, 111218, December 20, 2024 5
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The second key feature follows from the finding that most transcription occurs in factories/hubs54: then, initiation frequency must depend

on the distance in 3D space of a promoter to a factory rich in appropriate TFs. For example, in Figure 3B, promoter f is tethered closer to the

factory than g; therefore, f is the more likely to visit the factory and initiate. Such distance effects provide simple explanations for how reg-

ulatory motifs work. Here, e acts as an enhancer of f because it tethers f close to an appropriate factory. Figure S6 illustrates potential mech-

anisms based on this model for SEs, silencers, boundaries, insulators, eQTLs, and QTLs—as well as for other mysterious processes like trans-

vection59 and the pairing of meiotic chromosomes.60 Note that all these motifs are transcribed when active.1,57 We also imagine that eQTLs

andQTLs can act at the transcriptional level (and not just post-transcriptionally). Additionally, an active promoter is simultaneously any one of

these motifs depending on which target gene is considered, and so it is no longer puzzling why these motifs are so similar at the molecular

level.1,54 This model also qualitatively explains why somany contacts seen by Hi-C, micro-C, and GAM involve transcribed regions20–22,24 with

contact points moving as polymerases reel in their respective templates—which is impossible to explain without additional assumptions if

polymerases track (Figure S4). As expected, such contacts are sensitive to transcriptional inhibitors whereas contacts mediated solely by

TFs or cohesin will be insensitive; then, it is also no longer puzzling61 that these inhibitors eliminate some loops but not others.
A simple looping formula for predicting firing frequency

Deriving formulae that facilitate prediction of gene activity has a long and continuing history.62–68 For example, the deep-learning model En-

former shows great promise; it uses DNA sequence as input and is trained on a wide range of datasets that includeDNase hypersensitive sites

(DHSs), TF binding sites, and histone marks.67 In contrast to Enformer’s top-down approach, here we use a bottom-up one based on the

model summarized in Figure 3B. In other words, our approach will be training-free and will not use any contact data as input.

Against the backdrop provided by GWAS that firing of any promoter is influenced by a myriad of eQTLs, we apply a strategy used by par-

ticle physicists who represent interactions dominating complex outcomes with a few Feynman diagrams. Consider potentially active pro-

moters p-t on a small segment of a chromosome, each with the same affinity for a factory; this will lead to what we will call the 1-state model.

We suggest two Feynman-like diagrams depict interactions dominating the probability that r is transcribed (ptrans): the binding of r to a TF:pol

in a factory (Fig. 3Ci), and the stabilization of an r-s loop (s being the nearest promoter to r on the genetic map, and so likely to be the closest

potential tethering point; Fig. 3Cii). Then, the two terms in this approximate formula capture interaction in these two Feynman-like diagrams

(see STAR Methods for a derivation):

ptransðrÞ � b

�
1 +

c

lðrÞ
�

Here, b plus c are two positive constants that include contributions from TF:pol concentration, promoter number, affinity of TF:pols for

promoters, plus a looping probability determined using the relevant polymer model—that of a fractal globule.69 The only variable, lðrÞ, is
the genomic distance in base pairs from r to the nearest active promoter. Note that the two Feynman-like diagrams depicting unlooped

(Fig. 3Ci) and looped structures (Fig. 3Cii, 1-state) have equal weights in the case shown where q and r are separated by 30 kbp; however,

looped:unlooped diagrams have weights of 10:1, 1:1, and 1:10 for loops of 8.6, 86, and 860 kbp, respectively.

Thus far, we have assumed all promoters have identical affinities. However, GRO-seq signals at active human genes turn out to be higher

than those at non-genic TUs1—possibly because TF:pols have a higher affinity for genic promoters. Therefore, we incorporate such a differ-

ence into the constant b, which then becomes a parameter dependent on promoter type br , and illustrate this using human chromosome 14

(HSA14) in HUVECs. We first identify all DHSs as they are such excellent markers for active promoters,70 but others like ATAC-seq sites could

be used instead. Next, these active promoters are divided into genic and non-genic ones71 (using the chromatin HMM browser track). Any

remaining DHSs/promoters that have not yet been included are classified as others. The values of br for these three states (i.e., active genic –

bg, active non-genic – bng, and other – bo) are now weighted to reflect GRO-seq signals given by each type of promoter on this chromosome

(data from the study byNiskanen et al.72). Additionally, when considering any kind of promoter, the 2nd Feynman-like diagram (and term in the

formula) now involves a loop to another genic promoter (and never to a non-genic or other one). Consequently, the loop between r and genic

q replaces the r-s one as the 2nd diagram in Fig. 3Cii, 3-state. We expect this 3-state model to perform better than the 1-state one in man,

where active non-genic promoters so outnumber genic ones. Worked examples of the application of formulae to promoter’s p-t in Figure 3C

are provided in STARMethods to highlight contributions of the two diagrams. Both the 1- and 3-state formulae are looping formulae as they

capture spatial effects by looping to the most-proximal promoter.
Testing performance of looping formulae: Comparison with GRO-seq data

We first test the performance of each formula on HSA14 in HUVECs. We identify all promoters active on the chromosome (using DHS data),

determine ptrans for each one (for the 3-state formula using values of constant b determined as aforementioned), and rank ptrans values from

high to low (Figure 4A). Remarkably, patterns of activity given by the 3-state formula in two typical chromosomal segments better reflect those

seen by our gold standard (GRO-seq) compared to poly(A)+ RNA-seq—the most widely used approach (Figure 4B). Heatmaps show that

values obtained with the 3-state formula broadly match those from GRO-seq across the whole activity range from the least-to most-active

(Figure 4C).

We note that the value of the Spearman correlation between ranks predicted by the 3-state formula and those found by GRO-seq is rela-

tively insensitive to exact values of b and c (Figure S7A). For instance, for c = 86 kbp, any choice of br = bg;bng; 1 for promoters producing
6 iScience 27, 111218, December 20, 2024
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additionally bg, bng, and bo = 13.1, 3.3, and 1, respectively, for the 3-state one), and rank orders of promoters determined. 2,226 identical promoters in the

1-state case are split into 344 genic, 938 non-genic, and 944 others in the 3-state case.

(B) Formulae yield activity patterns in two typical regions of the chromosome similar to those obtained by GRO-seq.72 Results are coarse grained into 3 kbp

regions to allow comparison between datasets. The UCSC gene track excluding splice variants and non-coding genes,73 plus the chromatin HMM track,71

are included for reference (bottom). Profiles for RNA-seq miss poly(A)- RNAs but include stable mRNAs; they are chosen as comparators as they are so

widely used to assess transcriptional activity, and to define eQTLs. However, it is nascent RNA levels that are of prime interest here, and not steady-state

ones measured by poly(A)+ RNA-seq.

(C) Activities predicted with the 3-state formula broadly match those fromGRO-seq across the activity range. Ranked promoters are binned into deciles; bin color

in the heatmap reflects the fraction of all promoters found in a bin. Ten white squares on the diagonal from bottom left to top right (each with a fraction of 0.1)

would represent a perfect match.
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mRNA, eRNA, and neither, with 5%bg % 40; 1%bng % 8, leads to a Spearman correlation larger than the one between GRO-seq and

RNA-seq (Figure S7Ai,ii). Additionally, for values of b used in Figure 5B, varying c between 3 and 300 kbp only changes the Spearman cor-

relation from 0.66 to 0.62 (Figure S7Aiii; Figure S7B gives inter-chromosomal variations in values of bg and bng). Therefore, when applying the

3-state formula to cell types for which GRO-seq (or equivalent) data are unavailable, we expect that weightings for br applied in Figure 5B can

be used.

Predicting transcription genome-wide in different cell types

We next extend this approach to all chromosomes in HUVECs, and to two other human cells for which GRO-seq data are available—lympho-

blastoid GM12878, and embryonic stem cell H1. Active promoters are identified using DHSs, ptrans values calculated, and Spearman
iScience 27, 111218, December 20, 2024 7



-6
p < 10

3-state

1-state

RNA seq

comparing predictions (  and ) with GRO-seq data: different cells 1- 3-state

HUVEC GM12878 H1-hESC

0.4

0.8

 S
pe

ar
m

an
 c

or
re

la
tio

n

0

human chromosome
1 10 20 X 1 10 20 X 1 10 20 X

i ii iii

A
For each
chromosome
in a cell type

promoters

workflow (formulae) compare rank order
of all promoters
with that obtained
from GRO-seq data
(Spearman correlation)

DHSs

B

3-state formula p

1-state formula
(for each promoter)

trans

p trans

Figure 5. Predicting firing rates genome-wide

(A) Workflow. For each chromosome, all active promoters are identified using DHSs found in that cell type, their ptrans values calculated and ranked from high to

low, and Spearman correlations between the rank order and that from GRO-seq determined.

(B) Spearman correlations obtained by comparing rank orders (for each chromosome in 3 human cell types) of firing probabilities determined using the formulae

(and RNA-seq) with those fromGRO-seq, for each chromosome, shown as a bar plot. For the formula, we used c = 86 kbp. For the 3-state formula, bg= 13.1, bng=

3.3, and bo = 1 (values determined using GRO-seq data for HSA14 in HUVECs are applied to all cell types). 1-state: yellow bars. 3-state: red bars. The p value

computed measures the likeliness that correlations are obtained by chance. (i) HUVEC. The 3-state formula and RNA-seq yield roughly similar correlations.

(ii, iii) GM12878 and H1-hESC. Values for bg, bng, and bo are those for HUVECs and prove to be transferable to the two other cell types; however, RNA-seq

now outperforms the 3-state formula. Note that the correlations between GRO-seq and RNA-seq in the different cell lines appear to be slightly different,

possibly due to technical experimental noise.
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correlations between computed rank orders compared with those determined using our gold-standard, GRO-seq (a value of 1 indicates a

perfect match; Figure 5A). With all cells, our simplistic 1-state formula provides a significant correlation usually higher than that expected

by chance (Figure 5Bi-iii; compare yellow bars with white circles). Remarkably, the 3-state formula slightly outperforms RNA-seq in

HUVECs on all but HSA 3 and 21 (Figure 5Bi, compare red bars with blue lines). With all cells, the 3-state formula again gives high Spearman

correlations around 0.6 using values for bg, bng, and bo obtained with HUVECs; clearly, these values prove to be transferable between cell

types. However, now RNA-seq out-performs the 3-state formula with the other cells (Figure 5Bii,iii; compare red bars with blue lines).

When comparing the 1- and 3-state formulae, the 1-state model yields higher inter-chromosomal variation (e.g., gene-rich chromosome

19 gives low correlations) than the 3-state one.

In Figure 5 we use values of bg and bng obtained fromGRO-seq on HSA14 and apply them to all chromosomes. As average ratios between

GRO-seq signals at genic and non-genic promoters vary between chromosomes (Figure S7B), we also tested values ofbg and bng that are cell-

and chromosome-specific. Effects are marginal, and Spearman correlations between results from GRO-seq remain around 0.6 (Figure S8).

These results point to the 3-state formula providing an excellent and facile estimate of the transcriptional activity of all TUs (both genic

and genic) in different cell types.Moreover, it can even be applied to cells for which noGRO-seq (or equivalent) data are available to generate

weightings for bg and bng—as values derived from HUVECs prove to be transferable to other cell types (compare Figure 5Bi with Figure 5Bii

and iii).

Testing performance of looping formulae: Comparison with 3D polymer simulation data

We have seen that firing rates can be obtained from both 3D polymer simulations and formulae, and then validated by comparison with

GRO-seq data. To provide additional validation (as well as a sanity check) we now complete the loop by comparing firing rates determined

using formulae with those obtained from sets of polymer simulations that mirror the 1- and 3-state conditions (Figure 6A). In these Brownian-

dynamics simulations, HSA14 in HUVECs is represented as a bead-and-spring polymer (a string of 35,784 beads, each of 30 nm diameter cor-

responding to 3 kbp) that is confined within an ellipsoid of appropriate volume44 (as individual chromosome territories are often ellipsoidal).

Beads containing DHSs are identified as ones containing promoters, and those representing open chromatin by the presence of H3K27Ac

histone-modifications. Polymer simulations performed previously44,74 provide 1-state data; in these, TF:pols were attracted to promoter-con-

taining beads via a Lennard-Jones potential of 7.1 kBT (interaction range equal to 1.8 times bead diameter), and to beadsmarking acetylated

regions more weakly44 (potential of 2.7 kBT ) – with all other beads being non-binding. For the new 3-state polymer simulations, promoter-

containing beads are sub-divided into three types with different attractive potentials (i.e., genic – 7.1 kBT , non-genic – 4.4 kBT , and others –

3.5 kBT ), with the weakly- and non-binding beads being as for 1-state polymer simulations (see STAR Methods for more details).

Figure 6B illustrates a snapshot of a Brownian-dynamics simulation volume at steady state in a 3-state run. As expected, clusters con-

taining TF:pols bound mainly to genic and non-genic promoters spontaneously emerge. While these clusters occur throughout the
8 iScience 27, 111218, December 20, 2024
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Figure 6. Comparing firing rates obtained using formulae and polymer simulations

(A) Workflow. For HSA14 (HUVEC), all active promoters are identified using DHSs; then, using either polymer simulations or formulae, ptrans values are calculated,

ranked from high to low, and rank orders compared.

(B) Snapshot from a 3-state polymer simulation (left—all beads, right—just TF:pol beads).

(C) Polymer simulations yield activity patterns in a typical chromosomal segment like to those obtained by GRO-seq. Data for 1-state polymer simulations are

from,44 they were generated in this work instead for the 3-state polymer simulations (see STAR Methods). Coarse-graining is as in Figure 4B, from where

GRO-seq, poly(A)+ RNA-seq, gene, and HMM tracks are reproduced for comparison. Spearman correlations and p values with GRO-seq data are,

respectively: (i) 0.32 and <10�6 (polymer simulations, 1 state); (ii) 0.60 and <10�6 (polymer simulations, 3 states); (iii) 0.62 and <10�6 (poly(A)+ RNA-seq).

Another comparison can be done by binning rank data into deciles. Then, we count how many data fall in the same bin from GRO-seq and the other tracks,

normalizing this count by the number expected by chance: this ratio measures how good agreement with GRO-seq is. Ratios are: (i) 1.31 (1-state polymer

simulations); (ii) 1.82 (3-state polymer simulations); (iii) 1.71 (poly(A)+ RNA-seq).

(D) Activities predicted with the 3-state formula broadly match those from polymer simulations (sims) across the activity range. As in Figure 4C, ranked promoters

are binned into deciles, bin color in the heatmap reflects the fraction of all promoters found in a bin, and 10 white squares on the diagonal frombottom-left to top-

right (each with 0.1 counts) would represent a perfect match.
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volume, most (i.e., 88.5 G 0.5%, where the error is standard error of the mean) are found in the outer 50% of the ellipsoidal volume

(Figure 6). This striking difference is in accord with results of intron seqFISH showing that most nascent human transcripts are found close

to the surface of chromosome territories.75 Such a peripheral location is also consistent with the greater numbers of trans versus cis
iScience 27, 111218, December 20, 2024 9
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chromosomal contacts seen by ChIA-PET after pulling down pol II,76 and by GAM.24 The mechanism driving clusters to the periphery is

likely to be entropic: dispersing clusters with their high DNA densities as far away from each other as possible should reduce the free en-

ergy of the system. As before,44,74 we determine ptrans by measuring the amount of time a TF:pol spends bound to a bead. Both 1- and

3-state polymer simulations lead to activity patterns down chromosomes that match those seen by GRO-seq (Figure 6C). Both also yield

Spearman correlations that correlate well with those given by formulae across the activity range (Figure 6D). This provides further validation

of the effectiveness of the looping formulae, and that formulae can replace 3D polymer simulations when computational resources are

limited, or if calculation time needs to be minimized.
DISCUSSION

Our aim was to predict how transcriptionally active a genemight be in any given cell under any given condition—against the background that

gene regulation appears to be both simple (only 4 Yamanaka TFs switch cell fate) and complex (a myriad of eQTLs determine complex phe-

notypes, with few of these eQTLs encoding TFs; Figure S1B). Therefore, we reviewed a parsimonious pan-genomic model for both the orga-

nization and regulation that accommodates these very different results (Figure 3B). In this model, transcription rate depends mainly on the

frequency with which a promoter visits a factory rich in appropriate TFs, and this enables us to propose simplemechanisms for howmysterious

motifs like enhancers, silencers, and eQTLs all work (Figure 3B and S6). Note that these factories are unlike car factories with stable architec-

tures; instead, they are ephemeral, morphing as TF:pols bind/dissociate, and loops appear/disappear.Moreover, chromosome conformation

is unlikely ever to be the same in two daughter cells in any tissue in our bodies simply because there are so many promoters able to visit so

many appropriate factories, with any active promoter influencing the activity of all others to some degree.44 Then, the logic developed during

evolution that is embedded in DNA sequence, TF concentration, and binding frequency acts through the bridging-induced attraction to

organize small-world networks of clusters and loops that determine initiation rates.

Motivated by this pan-genomic model, and by focusing on just two configurations that we suggest dominate outcomes (i.e., binding to a

factory, and forming themost-likely loop), we went on to develop two variants of a simple looping formula that enable prediction of the prob-

ability that any promoter (whether genic or non-genic) is transcribed. The 1-state formula treats all promoters identically and requires as input

only the number of bp to the next nearest promoter on the chromosome. The 3-state formula divides promoters into three groups that fire at

different rates (i.e., genic, non-genic, plus ones not included in either of these two lists). When this 3-state formula is applied to 3 human cells

(HUVECs, lymphoblasts, stem cell), it performs as well as RNA-seq and 3D polymer simulations in estimating the firing rates of all promoters

across the whole activity range, and gives Spearman correlations of �0.6 when rank orders of firing probabilities are compared with those

obtained from GRO-seq (Figures 4, 5, and 6). Consequently, these looping formulae have various general advantages. They are based on

the physical forces we suggest drive genome conformation and promoter firing, they depend mainly on only one variable (distance in

base-pairs to the nearest active promoter) and not on data-fitting and/or machine-learning used by other promising (but top-down) ap-

proaches,67,77 they are easily extended (e.g., by addingmore diagrams that include trans contacts and/or different TF:pol complexes binding

with different affinities, and by varying weightings between different diagrams), and they are general in that they can be applied in any or-

ganism (however, they can only be validated when appropriate GRO-seq or equivalent data are available). At the same time, we stress

that there are some assumptions in our derivation of the looping formulae, which ultimately limit their applicability (see Limitations of the

study further).

We hope our unified conceptual views of genome organization and gene regulation can be combined with others to eventually enable us

to predict a gene’s activity and alter it in any desired way. The result of Yamanaka’s experiment coupled with the success of the AlphaFold2

algorithm in solving the protein-folding problem78,79—which is analogous to the genome-folding problem outlined here—encourages us in

our hopes. In Figure S9 we describe a roadmap that addresses a grand challenge—how one might switch the fate of any human cell in a

desired way.
Limitations of the study

In this study, we have derived a formula to predict transcriptional activity of promoters genome-wide. While the correlations of the corre-

sponding predictions with experimental data are statistically significant, there are some limitations deriving from the approximations which

we have employed. Themain ones are the following. (i)We include only two diagrams, and do not include trans contacts. (ii)We do not include

different types of TUs (for instance, binding to different types of transcription factors). (iii) In the 3-state formula, we only loop in the 2nd

diagram to the nearest genic promoter (however, far away it might be, and never to a non-genic or other one that might be closer). We antic-

ipate that in the future it will be important to tune these assumptions to accommodate new data, and to add complexity so that a higher

Spearman correlation with GRO-seq data can eventually be achieved. Additionally, it will be important to perform 3D simulations of chromo-

some structure and transcription genome-wide in their nuclear context, to add another dataset which can be compared to the predictions of

our looping formulae.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Processed DHS peaks for HUVEC,

GM12878, H1-hESC.

Data used are given in a

repository in this work

https://git.ecdf.ed.ac.uk/dmarendu/

unified-field-theory-of-genome-

organisation-and-gene-regulation

GRO-seq data. Data used are given in a

repository in this work

https://git.ecdf.ed.ac.uk/dmarendu/

unified-field-theory-of-genome-

organisation-and-gene-regulation

Software and Algorithms

LAMMPS: new 3D polymer simulations of

chromosome organization and transcription in

HSA14 (HUVEC cells) were performed with the

freely available LAMMPS molecular dynamics software.

From80 https://www.lammps.org

Additional simulation and analysis scripts. This work https://git.ecdf.ed.ac.uk/dmarendu/

unified-field-theory-of-genome-

organisation-and-gene-regulation
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

No experimental model was implemented in his study, neither any participat of any kind was involved.
METHOD DETAILS

A looping formula relating initiation rate to distance from an appropriate factory

Here we describe how to derive the formula which we used to predict transcriptional activity genome-wide starting from the position of

DNase hypersensitive sites (a TU in our formalism).

Consider a genomic segment withN TU beads that bind n TF:pol complexes; our formula will yield the probability that a given promoter in

a TU, i, is transcribed – which we estimate as the probability that a TF:pol is bound to i. Many configurations contribute to this probability, but

two do so significantly as they are the first steps in the firing pathway (depicted in Figure 3Cii as Feynman-like diagrams): onewhere ibinds to a

polymerase in a factory, and the second where i is tethered by the nearest active promoter to that factory. As we consider only promoters that

are active or potentially active in the cell type under consideration, the Boltzmann weight of the unlooped configuration is n ebeð1 � pðlðiÞÞÞ,
where b = 1=ðkBTÞwith kB the Boltzmann constant and T the temperature, e is the affinity between TF:pol and i (which is initially assumed to be

same for all promoters for simplicity in the one-statemodel; Figure 3Cii), lðiÞ is the distance on the geneticmap in base pairs between i and the

nearest promoter, and pðlÞ is the probability that the segment is looped (anchored by i to its nearest promoter, note we drop in the derivation

the dependence of l on i for simplicity of notation). The Boltzmannweight of the looped configuration is n e2bepðlÞ, because now there are two

contacts between the TF:pol and a TU.

For a confined chromosome, the relevant polymer model is that of the fractal globule, for which the looping probability can be

approximated aspðlÞ � a
l , with a a suitable constant.

69 The sumsof the Boltzmannweights of looped andunlooped configurations (Figure 3Cii)

is then n ebe
�
1 + ðebe � 1Þa

l

�
, and the transcriptional probability is this sum divided by the sum of weights of all possible configurations (which we

denote by Z, and whose explicit form we do not require here because we will only consider rankings of transcriptional activities, so that its

value drops out of the analysis). Then, the probability that i is transcribed (ptrans) has the form:

ptransðiÞ � b

�
1 +

c

lðiÞ
�

(Equation S1)

wherebplus c are two positive constants (b includes contributions fromTF:pol concentration, promoter number, and the affinity of TF-pols for

promoters; c includes contributions from the affinity of TF-pols for promoters, and looping). For example, the unlooped configuration in Fig-

ure 3Cii (for which i = r) gives a weight of b, and the looped one a weight of bc
lðrÞ , where lðrÞ = 24 (i.e., distance in kbp between r and s). Note

that as ranks of transcriptional activities are compared in subsequent statistical analyses, the two constants b and c become irrelevant in this

case (because they divide out and do not contribute to the relative rank).
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This simple formula, which we refer to as the looping formula to highlight the fact that it captures the effect of 3D looping to proximal

promoters, can be generalized to situations where different promoters bind TF:pol complexes with different affinities, and the approach

that follows is motivated by the observation that active genes in GM12878 cells were known to yield 2- to 3-fold higher GRO-seq signals

than active enhancers.1,81 For instance, consider the case where a promoter (corresponding in our example to a DHS peak) produces either

a mRNA, or an eRNA (or other non-genic RNA), or one that is in neither of these two lists. These three states are identified using the

ChromHMM browser track71 in which active genic promoters are marked by HMM state 1, active enhancers and other non-genic RNAs by

HMM states 4 + 5, and some DHSs have none of these HMM states (these will constitute our other class). In the 3-state model, instead of

a constant b we use bi, a parameter dependent on 3 promoter types that apply to TUs that are active genic – bi = bg, active non-genic –

bi = bng, and other – bi = bo. Then, when considering any promoter i (whether it is genic, non-genic, or other), the loop in the 2nd Feynman

diagram connects i to the nearest genic promoter (e.g., r connects to genic q in Figure 3Cii, 3-state), and bi now captures i’s state (i.e., it is

higher for such a promoter producing a mRNA, intermediate for one producing an eRNA, and smaller for the other class). To reiterate, when

considering any kind of promoter, we only loop in the 2nd diagram to another genic promoter (and never to a non-genic or other one).

We now provide worked examples where each formula is applied in turn to promoters p-t in Figure 3C. First, consider the 1-state formula.

Constants b and c contain components capturing TF:pol and promoter concentrations, plus the affinity of TF-pols for promoters. As our aim is

to compare relative values of ptrans and determine a rank order, and as each of these components is common to every promoter, we note that

both b and c are actually irrelevant in the 1-statemodel (they will divide out). However, in what follows we include these constants in the calcu-

lation for clarity. As the average loop length is not known for the cells analyzed, we use the average length found in HeLa54 (i.e., 86 kbp) and set

this equal to c. Then, for promoter r, ptransðrÞ � b
�
1 + 86

24

�
x4:58 b (as c = 86 kbp and l = 24 kbp) and values for p � t are 9:6 b, 9.6 b, 4.58 b, 5.3

b, 5.3b respectively; this gives a rank order (fromhigh to low) ofp = q;s = t;r. Now consider the 3-state formula. For promoter r, we note that

the distance to the closest genic promoter is now l = 24 kbp, so that ptransðrÞ � bng

�
1 + 86

30

�
x3:87 bng. Values for p � t are 9:6 bo, bg, 3.87

bng, 2.59 bng, 2.16 bng, respectively (note that the estimate of firing of q includes only the first diagram as calculating the second requires

knowing the location of the closest genic promoter which is not shown in the sketch). In Figure 4B, we use values for bg, bng, and bo =

13.1, 3.3, and 1, respectively, which gives a rank order (from high to low) of q;r;p;s;t. These values of bg, bng, and bo are based on observed

average ratios between GRO-seq signals for mRNA, eRNA, and other DHS peaks in human chromosome 14.

Our theory can be developed to include additional topologies (e.g., trans contacts, as well as double loops as in Figure 1Bii), and different

types of TF:pol (e.g., to include red plus green TFs binding to pink and light-green promoters respectively, as in Figure 1Cii). The latter is

especially relevant whenmodeling different cell types (as in Figure S9). In this case, looped Feynman-like diagrams would connect promoters

of the same type/color. Note that simulations of TFs with 5 different colors each binding with a different affinity to 5 different kinds of TU bead

leads to clusters that mainly contain TU beads of the same color.42 Consequently, this formula can be extended to tens of different TFs when

analyzing complex mammalian cell states and addressing the grand challenge outlined in Figure S9.

Note that our formula can be applied to any organism for which chromosomal positions of all promoters active in the cell type under study

are available (which can be obtained, for example, usingGRO-seq, ATAC-seq, or inspection of appropriate histonemarks). However, a critical

test of how accurately our formula (or any other approach) enables prediction of activity requires lists of relative activities of all transcription

units in a genome (i.e., both genic and non-genic). While lists of relative numbers of steady-state RNAs are widely available, those of relative

numbers of nascent transcripts are not (they are obtained, for example, by GRO-seq). It is for this reason that our tests use human data, but

testing can be extended to other species as appropriate data becomes available.
Polymer physics modeling

For 3D polymer simulations (Figure 6), we used a 3-state variant of the DHS model first discussed in44; note we used data from that paper for

the 1-state variant. In both variants, chromosomes are coarse-grained into bead-and-springs polymers, with 1 bead corresponding to 3 kbp

(diameter s = 30 nm), so that HSA14 of HUVEC is coarse-grained into 35,784 beads. The chromosome is confinedwithin an ellipsoid of appro-

priate volume44 (semiaxes 22:24 s : 34:24 s : 41:80 s). Beads containing DHSs are identified as TUs in both variants, and those representing

open chromatin by the presence of H3K27Ac histone-modifications.

Polymer simulations performed previously44 provide 1-state data; in these, TF:pols were attracted to TU beads via a Lennard-Jones po-

tential given by

ULJðdÞ =

8><
>:

4e

N

"�s
d

	12

�
�s
d

	6

�
�
s

rc

�12

+

�
s

rc

�6
#
if d < rc

0 otherwise;

(Equation S2)

where d is the distance between TU and TF:pol, rc = 1:8s is the interaction range (or cut-off), e = 7:1 kBT is the interaction strength, andN is a

normalization factor ensuring that the minimum of the potential is given by e. TUs interact again according to Equation S2, but weaker, with

chromatin beads corresponding to acetylated regions44 (e = 2.7). All other chromatin beads are non-binding, so there is only excluded vol-

ume interactions between them and TF:pols44 (modeled via a Weeks-Chandler-Anderson potential).

For a set of 64 new 3-state polymer simulations, TU beads are sub-divided into three types with different attractive potentials: as done for

the 1Dmodel, these three states are identified using the ChromHMMbrowser track.71 TU beads corresponding to active genic promoters are

marked by HMM state 1 and interact with TF:pols via Equation S2, with e = 7.1 kBT : TUs corresponding to active enhancers and other
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non-genic RNAs aremarked by HMMstates 4 + 5, and interact with TF:pols via Equation S2, with e = 4.4 kBT . Finally, all other TUs interact with

TF:pols via Equation S2, with 3.5 kBT . Interactions between TF:pols and the weakly- or non-binding beads are treated exactly as for 1-state

polymer simulations.

As is standard in these types of polymer simulations, the potential field also includes finitely extensible nonlinear elastic springs between

neighboring pairs of chromatin beads and bending energy between triplets of neighboring chromatin beads. TF:pols interact repulsively via

Weeks-Chandler-Anderson potentials, and so do any two pairs of chromatin beads. TF:pols switch between an active (chromatin binding) and

an inactive (non-binding) state at a constant rate. The parameter values used in this work, as reported here, are the same as those used in the

1-state model studied in.44,74
QUANTIFICATION AND STATISTICAL ANALYSIS

Data for the formula tracks in Figure 4B were derived as described in A looping formula relating initiation rate to distance from an appropriate

factory. Comparison between outputs from our formula and GRO-seq data were performed by evaluating the Spearman’s rank correlation

coefficient between these sets of values. Note that the value of the Spearman correlation between ranks predicted by the 3-state formula and

those found by GRO-seq is relatively insensitive to exact values of bg, bng, and bo and c. For instance, for values of bg, bng, and bo used in

Figure 4B varying between 3 and 300 kbp changes the Spearman correlation from 0.66 to 0.62 (Figure S7). Additionally, for c = 86 kbp,

any choice of bg, bng, and bo=1, for promoters producing mRNA, eRNA and neither, with 5%bg%40, 1%bng%8, leads to a Spearman corre-

lation larger than the one betweenGRO-seq and RNA-seq. Therefore, when applying the 3-state formula to cell types for whichGRO-seq data

(or equivalent ATAC-seq data) is not available, the exact weightings for b are unlikely to be crucial, and could be estimated based on our

results or using data from close relatives of cell types for which data are available.

In Figure 5 and S8 the p-values with threshold 10� 6 measures the likeliness that correlations are obtained by chance.

Data for the simulations tracks in Figure S3B were taken from44 for 3D polymer simulations in the 1-state (DHS) model. For the 3-state case,

see Polymer Physics Modeling.
16 iScience 27, 111218, December 20, 2024
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Figure S1. Ways of switching a gene on/off, and conflicting experimental results, related to Figure 1.  
A. Three possibilities. Oval + wavy red line: polymerase + transcript.  
(i) Covalent DNA structures differ in the off/on states (here, due to methylation of C residues – green lollipops).  
(ii,iii) If covalent structures are identical, one gene may associate with a different factor (here, an activator – red sphere), or 
adopt a different conformation (here, the polymerase only initiates at the point anchoring a loop). 
B. Two experimental results give conflicting views of how activity is regulated. 
(i) Simple (from Yamanaka’s experiment).  
(ii) Complex (from GWAS).  
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Figure S2. Major mechanisms stabilizing loops, related to Figure 1. 
A. Cohesin is a ring-shaped molecule that clips on to DNA like a carabiner on a climber’s rope to stabilize loops1,2. [The bridging-
induced attraction drives cohesin aggregation3, which is seen in mouse ES cells – with transcription opposing this4.] 
B. Phase separation.  
(i) The catalytic sub-unit of mammalian polymerase II5-8, plus initiation (e.g., MED1 with OCT4, ER, MYC, NANOG, SOX2, 
GATA2) and elongation factors9 (e.g., CYCT1 of P-TEFb, DYRK1A) contain low-complexity disordered domains that can form 
liquid drops.  
(ii) Such drops can stabilize clusters/loops5-7,9-11. 
C. The depletion attraction12,13. 
(i) In crowded cells, many small pink molecules (diameter < 5 nm) bombard (grey arrows) larger red complexes (5 − 25 nm) 
from all sides. If two large complexes collide, smaller molecules are sterically excluded from the green volume between the two 
and cannot knock them apart; consequently, small molecules exert a force on opposite sides of the two to keep them together. 
(ii) When polymerases (5-25 nm) bind to DNA this force can drive clustering/looping.  
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Figure S3. Simulations involving a simple polymer model yield contact maps like those found 
experimentally, related to Figure 1. 
A. Contact map for a 5 Mbp region of HSA19 in GM12878 cells obtained from 10 polymer simulations of the 
whole chromosome (data from15). 
B. Contact map of the same region obtained by Hi-C (data from16). 
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Figure S4. Transcription cycles (promoter – small red circle; polymerase – red oval; transcript – wavy red line; 
factory – large pink sphere), related to Figure 3. 
A. Traditional model with tracking polymerases.  
(i) Short gene. Many polymerases bind to a promoter, a few elongate for ~10 nucleotides (then many abort), and fewer 
still form a productive complex that tracks down the template. A variant model (not shown) has the polymerase initiating 
in a hub and tracking away from the hub16. 
(ii) Long gene. Now a 2nd polymerase may initiate (and probably abort) before the pioneer terminates. Few active human 
genes are ever loaded with >1 productively-elongating polymerase, and these so-called active genes are idle for most 
of their time17. 
B. Alternative with transiently-immobilized polymerases. 
(i) Short gene. The promoter diffuses to the factory and initiates; most resulting complexes again disassemble. Once a 
productive complex forms, the polymerase remains transiently bound to the factory as it reels in the template and makes 
a transcript. As the template moves past the polymerase, close tethering restricts diffusion of the now-active template 
(as seen in18). 
(ii) Long gene. Initial steps are as for the short gene, and yield a (productive) elongating complex that tethers the 
promoter close to the factory (3rd panel down); therefore, the promoter is likely to revisit the same factory (arrow) and 
reinitiate (as the pioneer continues to transcribe) to yield a sub-gene loop (4th panel down). If the 2nd polymerase aborts 
and the promoter cycles through several initiations and abortions, the length of this sub-gene loop grows as the pioneer 
continues transcribing. Then, segments lying progressively 3’ are brought successively next to the promoter. 3C 
confirms this with various long human genes19-21. Super-resolution RNA FISH also confirms that nascent promoter-
proximal transcripts lie next to nascent RNAs copied from progressively further into the long gene21. Moreover, ChIA-
Drop shows such directional 3’ bias in contacts between fly promoters and down-stream segments22; in this study ~80% 
contacts contained one genic promoter – consistent with this model applied to genomes where non-genic promoters 
out-number genic ones. All these results are simply explained if the active polymerase is transiently immobile, and 
impossible to explain if the enzyme tracks without complex additional assumptions. 
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Figure S5. Interpretation of Miller spreads23,24, related to Figure 3.  
Iconic images of Christmas trees are often cited as the best evidence that active polymerases track down their 
templates. These are obtained by spreading a 3D structure with >50 polymerases tightly packed on one bacterial 
rDNA unit on to a 2D surface, and electron microscopy; nascent transcripts appear as branches in the tree (as 
bottom right). Most other TUs are associated with just 1 polymerase and one branch (as bottom of 3rd grey 
column). We argue such images25 (and similar ones of lampbrush loops) provide strong support for our view and 
against the traditional one – a view confirmed by single-molecule18,26. Note that a distinct topological problem 
arises whether or not polymerases track (twin domains of supercoiling form on each side of the polymerase and 
are removed by topoisomerases). See also Video 1. 
1st grey column: one polymerase tracking down a typical unit. Transcription requires lateral and rotational 
movement along and around a helix, so tracking along a helical path generates a transcript entwined once around 
a template for every 10 bp transcribed. Spreading an engaged polymerase and 500-nucleotide transcript should 
yield a transcript with 50 entanglements (only 3 shown at bottom) – and not one extended (un-entangled) branch 
as in Miller’s images. No mechanism is known that can untwine a transcript exactly the right number of times to 
free it from the template to give such images.  
2nd grey column: many polymerases (only 3 shown) tracking down a rDNA unit. As for a single polymerase, each 
transcript should become entwined many times. With >50 polymerases we should see a dense mass of RNA 
around the template (not distinct and untwined branches extending from the trunk). 
3rd grey column: a single enzyme fixed to the green factory reeling in a typical unit. Now DNA moves laterally plus 
rotationally (black arrow). Screwing a bolt through a fixed nut provides an analogy. On spreading, the template is 
stripped off the factory, so we see a single untwined transcript. 
4th grey column: many fixed enzymes (up to 6 shown) reeling in a rDNA unit. As before, the template moves 
laterally and rotationally (black arrows) over a larger factory to yield untwined transcripts, and now spreading 
yields the Xmas trees seen in the iconic images of single rDNA units. Here, screwing a bolt through 6 fixed nuts 
provides the analogy 
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Figure S6. Regulatory motifs, related to Figure 3.  
Letters mark green and red promoters that tend to initiate in numbered factories of similar color. All motifs discussed 
are transcribed when active. 
(i) Enhancer27-29. Transcription of e ensures f is tethered close to red 2, so f often visits 2 and initiates (creating a new 
e:f loop and 3C contact). Then, we call e an enhancer of f. 
(ii) SEs30. e detaches from 2 when its polymerase terminates. If c, d, and e are strong promoters, there is a good chance 
one re-initiates in 2 to re-tether f close to 2 and increase its likelihood of re-initiation. Consequently, we call c, d, and e 
a SE of f. Repeated initiation of f generates the bursty transcription seen in vivo and in polymer simulations14. 
(iii) Silencers31.Transcription of i ties green h close to red 2, and far from green 1. While h and f visit red 2 equally often, 
f does not initiate there as green factors are missing; moreover, while i is transcribed, h cannot visit green 1. 
Consequently, we call i a silencer of h. 
(iv) Boundaries, insulator32,33. If b and c-e are transcribed often, h visits green 1 rarely; consequently, b + c-e prevent f 
and h from diffusing further afield, and so we call them boundaries and insulators. 
(v) eQTLs and QTLs. If a SNP in e reduces TF binding, this shortens the time e is bound to red 2 – to decrease close 
tethering (and so firing frequency) of f and g. If f and g are genes, we call this SNP an eQTL as it down-regulates both. 
As f and g bind red TFs, they are functionally related; this explains why eQTLs target (and often contact) functionally-
related genes. Now consider a SNP in i that reduces binding to red 2. This shortens the time i is bound to 2 and allows 
h to visit green 1 and so fire more often. If h is a gene, we will call this SNP an eQTL as it up-regulates h. If f, g, and h 
encode proteins affecting a trait of interest, we call these SNPs in i and h QTLs. Critically both eQTLs and QTLs act co-
transcriptionally here (of course, this does not exclude them from acting post-transcriptionally as in the omnigenic and 
other models). 
(vi) Motifs leading to loose chromosome pairing during meiosis and transvection34. Homologs have similar DNA 
sequences and so organize similar strings of colored factories (which we will call homologous factories) down their 
lengths. If i p is the paternal homolog of maternal i, homologs are tied together through red factory 2. Binding of more 
promoters to appropriate homologous factories will then zip chromosomes together. We suggest this occurs rarely in 
somatic cells, but often in meiotic ones – where complete zipping is aided by long times, plus a variety of species-
specific mechanisms35. In human meiosis, we anticipate such a (1st) homology search depends on promoters sifting 
through a few thousand factories/cell to find appropriately-colored ones. Subsequently, the (2nd) well-known base-
pairing search screens through thousands of bases/loop (not the billions in the genome) to achieve tight recombinational 
pairing (attainable in the time available, even when loops contain repeated sequences that defeat a genome-wide 
search). Now consider transvection – the trans complementation originally seen in flies where mutations on different 
homologs recreate the wild-type, but only if homologs pair36. Imagine the maternal homolog encodes wild-type gene f 
m plus a mutant enhancer e m (so f m is silent), and the paternal one a mutant f p plus a wild-type e p (so f p is also silent). 
Once homologs pair, wild-type f m becomes tethered close to a red homologous factory, so enabling it to fire. This 
factory-based search is aided by local concentrations (in relevant fly cells homologs are polytenized >100x, and in 
meiosis each pairing partner is duplicated). [It is also driven by the depletion- and bridging-induced attractions that 
operate throughout evolutionary time, and once bi-/multi-valent proteins appear, respectively. Therefore, both could 
occur before the Darwinian threshold marking the transition from primordial cells (each probably with many 
genomes/cell), through LUCA (the last universal common ancestor), to distinct archaeal, bacterial, and eukaryotic 
lineages37. This has obvious implications for which paths evolution followed, and when/how the mystery that is sexual 
dimorphism developed.] 
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Figure S7. Artificially varying constants within experimentally-observed limits has little effect on the 
performance of the 3-state formula, related to Figure 4. 
A. Effects of artificially varying of bg, bng, and c (HUVEC, HSA14). The formula is applied as the value of one constant 
is systematically varied (invariant values indicated); then, rank orders of all promoter activities are determined, and 
Spearman correlations determined using GRO-seq data as a reference. Grey circles indicate values used in Figure 4. 
Spearman correlations prove to be relatively insensitive to variations of bg and bng (within experimentally-determined 
limits seen in panel B), and over a wide range of possible average loop lengths. 
B. Chromosomes-specific values of bg and bng determined from GRO-seq data (HUVEC). For each chromosome, 
promoters are classified as bg, bng, or bo, the number of reads seen in GRO-seq data extracted, values normalized 
relative to those seen with all bo promoters (where the average value is set equal to 1), and averages determined. 
Chromosome-specific values of bg are always greater than those of bng (dotted lines give average values). For all 
chromosomes in the 3 cell types examined (i.e., HUVEC, GM12878, H1-hESC), values of bg vary between 3-35, and of 
bng between 1-8 (not shown). 
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Figure S8. Varying constants bg and bng has little effect on Spearman correlations obtained in different cell types, 
related to Figure 5. Predictions obtained with the 1- and 3-state formulae are compared with those obtained 
experimentally by RNA-seq and GRO-seq for all chromosomes in the cell. With the formulae, active promoters are 
identified using DHSs, their 𝑝𝑡𝑟𝑎𝑛𝑠 values calculated and ranked from high to low, and Spearman correlations between 
the rank order and that from GRO-seq determined (using  𝑐=86c=86 kbp). For the 3-state formula, values of bg and bng 

are derived from GRO-seq data using the chromosomes indicated. Note that the p values computed measure the 
likeliness that correlations are obtained by chance, hence these are identical in all panels in one row. In the 1st panel in 
each row, values of bg and bng are based on those found in HSA14 (bg = 13.1, bng = 3.3, and bo = 1) and are reproduced 
from Figure 5 to allow comparison. In the 2nd panel, they are for each individual chromosome in that cell, and applied to 
each chromosome individually. In the 3rd panel, the average value for all chromosomes in that cell are applied to each 
chromosome individually. Spearman correlations prove to be relatively insensitive to the variations tested. A. Results for 
HUVEC cells.  B. Results for GM12878 cells. C. Results for H1-hESC cells. 
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Figure S9. Solving a grand challenge: the ab initio determination of which TFs to over-express to switch any 
human cell from state A to B, related to Figure 6.  
We know TFs specify cell identity by binding to cognate sites associated with unique SEs9,38, that frequent 
promoter:promoter contacts form sub-maximal cliques39,40,51, and that chromosomes in different states have their own 
sets of characteristic structure41. 
A. Cartoon: hypothetical genetic map and example structures found in states A + B. TUs a-o are in alphabetical order 
(genic ones – c, f, k; non-genic – all others). Red promoters are active in state A, purple ones in state B, and green 
(housekeeping) ones in both states. In this conformation of state A, red gene f is transcribed (g and h are its SE – both 
currently untranscribed), as is housekeeping-gene k. In state B, purple gene c is tethered close to the purple factory by d 
(which forms a SE with e) and will soon fire, and housekeeping k is again being transcribed. The grand challenge is to 
find which TFs to over-express to convert state A to B. 
B. One possible roadmap. For each state, we identify all active promoters42 (e.g., using DHS or ATAC-seq data), generate 
sets of 3D structures using polymer simulations (e.g., with HiP-HoP43) + the formula, check results (e.g., using GRO-seq, 
NET-seq, Hi-C, micro-C, GAM, pore-C), and select clusters uniquely present in each state. We now identify clusters in 
the state-specific sub-set rich in particular TFs that specialize in transcribing state-related TUs. Thus, red TUs associated 
with pink factories in state A will tend to contact other red TUs and so constitute a small-world network detectable by 
mapping close DNA:DNA contacts (e.g., using Hi-C). For example, b, f, g, and h all form frequent pairwise contacts with 
each other, and with other red TUs on the same and different chromosomes. This small-world of TUs should all bind the 
same red TFs (detected using ChIP-seq, with contacts between members of the clique being confirmed by Hi-C). This 
combination will probably yield one long list of red state-specific TUs/TFs, plus another for purple state-specific ones. We 
now shorten such lists by selecting (i) critical TFs specifying state B that we assume bind to B-specific SEs and promote 
transcription of B-specific/purple genes, and (ii) large-effect eQTLs affecting B-specific genes (using polymer simulations 
+ the formula, and checking that appropriate contacts are made in each distinct small-world network) by eliminating 
binding to sites in each SEs in turn to see what consequential effects there are on computed transcriptional activity. Having 
shortened the list, we screen (using polymer simulations + the formula) to see whether over-expressing remaining TFs 
converts state A to B, and select ones inducing the wanted change. Finally, we confirm experimentally this fate switch. 
Obviously, the roadmap will be augmented by other approaches41,44-50. 
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