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DNA replication timing reveals genome-wide
features of transcription and fragility

Francisco Berkemeier 1,2 , Peter R. Cook 3 & Michael A. Boemo 1,2

DNA replication in humans requires precise regulation to ensure accurate
genome duplication and maintain genome integrity. A key indicator of this
regulation is replication timing, which reflects the interplay between origin
firing and fork dynamics. We present a high-resolution (1-kilobase) mathe-
matical model that infers firing rate distributions from Repli-seq timing data
across multiple cell lines, enabling a genome-wide comparison between pre-
dicted and observed replication. Notably, regions where the model and data
diverge often overlap fragile sites and long genes, highlighting the influence of
genomic architecture on replication dynamics. Conversely, regions of strong
concordance are associatedwith open chromatin and active promoters, where
elevated firing rates facilitate timely fork progression and reduce replication
stress. In this work, we provide a valuable framework for exploring the struc-
tural interplay between replication timing, transcription, and chromatin
organisation, offering insights into the mechanisms underlying replication
stress and its implications for genome stability and disease.

Accurate DNA replication is essential for faithfully duplicating genetic
information, ensuring its preservation for future generations1. In
humans, replication occurs during S phase when multiple discrete
chromosomal sites, termed origins of replication2, fire to initiate
bidirectional replication forks—molecular machines that traverse the
chromosome and replicate DNA3. These forks move in opposite
directions, progressing until they encounter another fork, reach a
chromosomeend (Fig. 1a), or face an obstacle (e.g., a bound protein or
transcription complex4). Intriguingly, eachoriginfires stochastically so
firing sites and times differ from cell to cell. Despite this apparent
randomness, consistent trends emerge so that different cell types have
characteristic firing profiles5.

Replication timing refers to the time at which a specific locus
either fires (if an origin) or is passively replicated by an incoming fork.
These timing profiles are closely associated with various chromatin
structures6, as well as gene expression7 and replication stresses8. Fur-
thermore, timing is linked to genetic variation9 and cancer (where late
or delayed replication often correlates with increased genomic
instability10). Of particular interest are fragile sites, regions that are
especially vulnerable to breakage due to replication stress, and are
often found in late-replicating regions11. These sites, and the longgenes

found within them, are often hotspots for the chromosomal rearran-
gements and deletions that arise in cancers and other genetic
diseases12.

Replication, transcription, and chromatin organisation are also
intricately inter-connected, with each influencing the other13–15. In
particular, chromatin remodelling regulates the accessibility of reg-
ulatory factors, influencing both gene expression and replication.
Open chromatin is strongly linked to transcriptional activity and plays
a crucial role in replication timing16,17. Although associations between
genomic features are well-established, identifying site-specific or
context-dependent differences remains a challenge. Experimental
approaches often struggle to isolate individual variables, limiting our
ability to disentangle the interplay between replication and other
processes.

To address these gaps, we develop a stochastic model that maps
origin firing rates to replication timing, capturing variability across cell
populations. By integrating data from RNA-seq18, ChIP-seq19, GRO-
seq20, and a database of fragile sites (HumCFS21), we provide a frame-
work to explore how discrepancies between the model’s predictions
and experimental data may reflect signatures of transcriptional activ-
ity, chromatin openness, and genomic fragility. Our model acts as a
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null hypothesis, representing how replication should occur in the
absence of perturbation from genomic features. The central aim is to
identify loci where the model’s predictions diverge from experimental
observations, highlighting regions that may experience replication
stress or other anomalies. By deriving a closed formula for the
expected time of replication at each genomic site, we establish a solid
mathematical framework to support our computational simulations.

Ourworkflow is simple: using only timingdata as input, alongwith
minimal genomic parameters such as potential origin locations, the
model determines firing rates and predicts timing profiles plus other
key kinetic features like fork directionality and inter-origin distances.
Researchers with replication timing data can use this model to rapidly
generate precise replication dynamics profiles without extensive
computational expertise, revealing factors that influence replication
timing and genome instability across various contexts.

Despite significant advances in mathematical modelling22–25,
deriving a position-specific, data-fitted model that precisely links
replication timing to origin firing has remained a challenge. While
some approaches rely on neural networks to infer probabilistic land-
scapes of origin efficiency26, ours differs by deriving a closed-form
relationship between timing andfiring. Rather than relying on complex
inference techniques, ourmodel abstracts intrinsic firing rates without
directly tying them to specific biologicalmechanisms such as licensing
or activation. This allows a precise fit to observed timing data and
enables simulation of genome-wide dynamics in a direct and inter-
pretable manner. Our approach improves existing fitting methods by
adopting a convolution-based interpretation of the timing pro-
gramme. Using process algebras from concurrency theory27, wemodel
replication forks and origins as a concurrent system, simulating their
behaviour across the genome. In this work, we demonstrate how a
theoretical description of replication timing uncovers key links
between timing, genomic stability, and other essential genomic
processes.

Results
An equation for DNA replication timing
We begin by introducing our stochastic framework for replication
timing, which is fully detailed in the Methods and in Supplementary
Note 1. We aim to identify and quantify genomic regions where repli-
cation timing deviates from theoretical predictions, hereafter referred

to as replication timing misfits, which may indicate potential sites of
replication stress or instability. To accomplish this, we model the
complex, nonlinear relationship between origin firing rates and repli-
cation timing (Fig. 1b) and fit these rates to experimental timing data.
This approach enables investigation using replication forks, origins,
and DNA templates as the level of abstraction.

In our framework, the genome is divided into 1 kb segments
(sites). Each site j can fire as an origin at a rate fj, while replication forks
progress at a constant speed v. Concretely, the waiting time for each
site’s origin to fire follows an exponential distribution with parameter
fj. Let Tj be the time at which site j is replicated, either by firing as an
origin itself or by being passively replicated by an incoming fork. The
expected replication timeat any site j is thenobtainedbyweighting the
contributions from all potential origins, leading to the following
closed-form expression

E½Tj�=
XR
k =0

e�
P

jij≤ k ðk�jijÞf j + i=v � e�
P

jij ≤ k ðk + 1�jijÞf j + i=vP
jij≤ k f j + i

ð1Þ

where the indices {j ± i} cover neighbouring loci within a chosen radius
of influence R, i.e., the distance within which neighbouring origins are
assumed to affect the timingof a focal origin. Equation (1) enables us to
infer the stochasticmodel’sfiring rates {fj} from timingdata (e.g., Repli-
seq), generating a best-fit timing profile for the entire genome that can
then be compared with the observed measurements. Regions
exhibiting significant discrepancies (misfits) can indicate replication
stress or other biological factors not captured by the model. In the
following sections, we apply this model to different human cell lines,
demonstrating how it reproduces global replication patterns and
highlights specific genomic loci thatmaywarrant deeper investigation.

Predicting genome-wide replication
After assigning the time of replication (determined using Repli-seq
data) to every 1 kb segment of the genome in 11 different human cell
lines, site-specific firing rates are fit to the data via Eq. (1). Then,
replication is simulated usingBeaconCalculus (bcs), a conciseprocess
algebra ideal for concurrent systems (see Supplementary Note 2).
Finally, we explore patterns of replication seen after averaging 500
simulations for each of the 11 lines (Fig. 2a).
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Fig. 1 | A kinetic model of DNA replication. a Replication initiates at specific
origins that are licensed by the end of G1 phase. During S phase, replication forks
progress bidirectionally from origins, passively replicating DNA until they merge
with forks from adjacent origins or reach chromosome ends to complete replica-
tion and enter G2. In this example, three origins (ORIs 1, 2, and 3) fire at different
times, with nascent DNA strands shown in red. At the end of replication, two
identical copies of the original template are formed. b Illustration of the expected
inverse but non-trivial correlation between firing rates (top) and replication timing

(bottom, with an inverted y-axis). In a model where the firing time of each origin is
anexponentially distributed randomvariable, the firing rate is the parameter of this
distribution and tends to decrease as replication timing increases, indicating that
regions with higher firing rates replicate earlier in S phase. Replication timing,
measuredby Repli-seq, shows the average replication time across a cell population,
with peaks corresponding to potential origins. ORI 2 is in a late-replicating region,
while ORI 3 replicates earlier, as indicated by their relative positions on the timing
curve. Adapted from Hulke et al.70.
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We begin by comparing experimental timing profiles to those
obtained from Eq. (1). Note that this is equivalent to averaging the
timing profiles from a large number of bcs simulations, which also
allows us to save significant computational resources when computing
timing alone. An example for chromosome 1 in HUVECs is shown in
Fig. 2b. As expected, some regions replicate early (e.g., around 173Mb)
and others late (e.g., around 171 Mb). Overall, the model’s predictions
agree well with the experimental data (see Methods).

We focus on the regions with high misfit error (shaded in
yellow and red in Fig. 2b), where the assumption of constant fork
speed in Eq. (1) leads the model to predict earlier replication
times than are observed experimentally. Because a constant
speed imposes an inherent upper bound on how quickly repli-
cation can transition from early to late (see Supplementary
Note 2.2.2), any steeper or delayed transitions—potentially arising
from fork stalling or local inefficiencies—remain unmatched by
the model. These high-misfit zones thus highlight loci where forks
appear to slow or stall beyond our simplified assumptions, flag-
ging potential replication stress hotspots for more detailed study.

While firing rates are directly inferred fromEq. (1), replication fork
directionality (RFD) is calculated as the proportion of cell cycles (or

bcs simulations) inwhich a given site is replicated by rightward versus
leftward forks. RFD values range from −1 (always replicated by leftward
forks) to +1 (always replicated by rightward forks), with intermediate
values indicating a mix of replication directions across simula-
tions (Fig. 2b).

To validate the model, we examine global distributions of multi-
ple features. Despite little variation in firing in HUVECs (Fig. 2c),
HCT116 exhibits a pronounced bimodal pattern, likely driven by dif-
ferences in data sources28 (Fig. 2d, e), whichmay affect how replication
timing and origin firing rates are captured. Regarding RFD, our results
demonstrate a balanced bidirectional fork movement, with fork
directionality symmetrically distributed and accumulating around
zero, indicating efficient replication progression (Fig. 2f). This pattern
aligns with recent quantifications of fork directionality in human
cells29. While determining inter-origin distances (IODs) is straightfor-
ward from our simulations, doing so from DNA-fibre experiments
remains challenging due to technical limitations and potential biases30.
Nevertheless, simulations show a concentration of IODs within the
commonly observed range of 100–200 kb31 (Fig. 2g).

Although these results validate the model against established
metrics, its broader ability to simulate other features, like replicon
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Fig. 2 | Predicting genome-wide features of replication. a Overview of the main
model and analysis. Starting with Repli-seq timing data, origin firing rates are fitted
through Eqs. (1), (10), and (11). These rates generate expected timing profiles for
comparison with experimental data to identify regions of timing misfits and fork
stalling, which are analysed for correlations with other genomic processes. Simu-
lations of replication features, such as fork directionality and inter-origin distances,
validate the model against the literature. b Example of main modelling outputs
from a region in HUVECs. Here we see the replication timing of both experimental
and simulated data, and themagnitudeof themisfit (error) for replication timing in
a region where replication forks often stall; this leads to elevated errors that the
model struggles to capture accurately. We also show the inferred origin firing rates
and fork directionality, scaled between -1 (leftward) and +1 (rightward). We

highlight three regions of interest: (1) A passively replicated site predominantly
replicatedby rightward-moving forks (RFD~ 1); (2) A likelyorigin, characterisedbya
high firing rate and an RFD of 0; (3) A poorly fitted region between two origins with
a low firing rate determined by the fitting algorithm with RFD of 0 (an equal like-
lihood of replication by leftward- and rightward-moving forks). c Kernel density
estimate (KDE)offiring rate distributions across selected chromosomes inHUVECs.
d–g KDEs comparing genome-wide features—including firing rates, replication
timing, fork directionality, and inter-origin distances—across different cell lines. All
distributions align with experimental observations. Areas under curves are equal to
1, while y-axis values are omitted to emphasize relative shapes and distributions
rather than absolute magnitudes.
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lengths and active fork numbers, highlights its value in capturing the
full spectrum of replication dynamics. The most compelling insight,
however, comes from examining regions where the model’s predic-
tions diverge from data, as these discrepancies may coincide with
critical sites of genomic instability, revealing areas of unique biological
interest, which we address next.

Hotspots of instability
We now determine genome-wide error profiles in all 11 cell types
(Fig. 3a illustrates those for chromosome 1). Remarkably, some of the
regions that fit poorly are found in all cell lines (despite using dif-
ferent genome builds); this underscores the robustness of profiles

across cell types32. Replication timing and firing rates show a strong
negative correlation (Spearman’s rank correlation of ~ −0.89; Fig. 3b);
regions with higher firing rates tend to replicate earlier. Late-
replicating regions also have a wide spread of low firing rates,
reflecting a pattern captured by the fitting algorithm. Additionally,
the lowest errors are seen in the earliest replicating regions, mod-
erate ones in both early- and late-replicating regions, and the highest
are distributed throughout mid-to-late S phase (Fig. 3c). This sug-
gests misfits increase as S phase progresses and fewer firing events
occur. Low firing rates are also associated with high errors (Fig. 3d;
note the branched profile, reflecting difficulties in accurately mod-
elling high-to-low firing rate transitions). Timing misfits are
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Fig. 3 | Detecting discrepancies in replication timing determined experimen-
tally and in simulations. a Normalised error plots (red—high error, green—low
error) highlighting deviations between simulated and experimental replication
timings (chromosome 1 in various human cell lines). Grey areas: missing or una-
vailable data. b–d Density scatter plots illustrating key relationships in H1 cells
(averages of 500 simulations). Pairwise combinations of three variables are shown:
replication time, firing rate, and error. In b, the inverse correlation between repli-
cation timing andfiring rate is evident, with greater variability infiring rates late in S
phase. c shows the relationshipbetween replication timing anderror, revealing that
high errors are distributed throughout S phase (dotted oval). d illustrates the

branching relationship betweenfiring rate and error. e Error distributions inHUVEC
cells, grouped by replication timing (early vs. late), genic vs. intergenic regions, GC
vs. AT content, and classification of fragile sites (common vs. rare, CFS vs. RFS).
f Genome-wide error profiles in different cells. g Scatter plot comparing average
simulated timing slope, indicative of the progress of replication over time, against
observed data, colour-coded by associated error. The zoomed-in region at
[1.2, 2] × [0, 2] kb/min highlights the 1.4 kb/min bound on the simulated slope. Each
dot represents a simulated-observed data pair, with the strand-like continuity
arising from the high resolution of our 1 kb model, where proximity between
adjacent pairs reflects the minimal positional shifts captured at this scale.

Article https://doi.org/10.1038/s41467-025-59991-w

Nature Communications |         (2025) 16:4658 4

www.nature.com/naturecommunications


predominantly concentrated in late-replicating regions (Fig. 3e). This
is consistent with prior results suggesting that the replication
machinery encounters more obstacles towards the end of S
phase33,34. Additionally, errors exceeding 104 (min2) are more fre-
quent in non-coding regions compared to coding ones, indicating a
potential vulnerability of non-coding DNA to replication stress.
Misfits also vary between cell lines, with HCT116 displaying a distinct
pattern likely due to differences in data processing (Fig. 3f; see
Methods). Similar disparities were observed in firing rate distribu-
tions, hinting at the potential for cell line-specific analyses to offer
further insights. However, given our focus here, we leave a detailed
analysis of these dynamics for future exploration.

In regions with infrequent origin firing, the slope of the timing
curve—representing the rate of replication changes over time—is pri-
marily governed by fork speed, establishing an effective bound of 1.4
kb/min (Fig. 3g). This constraint becomesmost evident in regionswhere
observed gradients fall beyond such a bound, resulting in error accu-
mulation around slower-replicating areas. Origin competition, where
nearby origins fire at similar times, further compounds these errors,
producing timing valleys between origin firing peaks. These patterns
highlight regions of potential stress, suggesting areas for further study.

Fragile sites and long genes
Fragile sites are specific chromosomal regions prone to gap forma-
tion or breakage under conditions of replication stress35; examples

include FRA3B36 and FRA16D37. They frequently arise after inhibiting
DNA synthesis or applying other replication stresses38, often contain
few origins11, and likely result from fork stalling or collapse39. Fragile
sites can be broadly categorized into common fragile sites (CFSs)
present in most of the population and rarer ones (RFSs) found in
relatively few individuals21,40. As seen before, replication timing mis-
fits tend to be most pronounced in mid-to-late S phase, where
regions such as fragile sites often coincide with higher errors
(Fig. 4a–d). FRA3B and FRA16D show even greater median misfit
lengths (Fig. 4e), indicating that these loci can pose particular chal-
lenges for our model. Likewise, large genes in fragile sites (e.g.,
CNTNAP2, LRP1B, FHIT) exhibit substantial errors (Fig. 4f, g), and
applying an error threshold confirms that long genes overlapping
misfit regions (~30% of which reside in fragile sites) stand out readily
(Supplementary Table 1). Although certain chromosomes (e.g., 15,
20, 22) lack major fragile-site misfits, most display a notable linkage
between fragile sites, large genes, and replication stress. While not all
fragile sites follow one uniform pattern, these observations under-
score broad genomic regulation factors that potentially influence
replication timing and error.

Fragile sites are also known to be cell-type specific36,41, yet our
analysis of 11 lines, with H1 cells serving as one illustration, suggests
that core fragility-misfit correlations are relatively consistent even if
the degree of disruption varies. A more detailed case study of HCT116,
where confirmatory data on fragile site expression is available42, is
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show the median (middle line), 25th–75th percentiles (box), whiskers up to 1.5
times the interquartile range, and outliers (open circles). In total, 1262 continuous
misfit regions across all fragile sites were analysed to illustrate global trends. Bot-
tom: normalisedmisfit fraction at different sites. fMisfit fraction analysis of whole-
genome genic regions, and at the largest genes within fragile sites (normalised).
g Scatter plot of replication timing vs. error trajectories for long genes, highlighting
error accumulations based on gene size and location within fragile sites.
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included in the Supplementary Information (SupplementaryNote 2.4),
highlighting how individual chromosomes and cell-line dependent
features can shape replication stress at fragile sites. Taken together,
these findings reinforce that fragile sites often correlate strongly with
replication misfits, though not uniformly across the genome or in
every cell type. By pinpointing likely hotspots of replication stress, our
model provides a powerful framework for guiding experimental
follow-up.

Transcription and chromatin state
Transcription and replication have long been recognised to interact
in complex and sometimes conflicting ways, particularly at fragile
sites43. Previous studies show that transcription can create barriers to
replication, mainly via R-loops, that can obstruct fork progression,
leading to stalling or collapse. Long genes associated with CFSs have
a scarcity of replication origins, forcing forks to traverse a long dis-
tance which can delay replication44. This delay is particularly pro-
nounced in transcriptionally active regions. However, this is not
always the case, as chromatin structure can play a more dominant
role in timing discrepancies. Building on the previous results, we now
turn our attention to interactions between transcription, chromatin
structure, and replication. Regulatory elements like active promoters
and enhancers are marked by histone modifications such as
H3K4me345, DNase I hypersensitivity (DHS), and transcription-factor
binding, detected using ChIP-seq46,47. By integrating data from ChIP-
seq, RNA-seq, and GRO-seq18,20,46,48, we assess how these markers are
associated with replication timing. Regions with high GRO-seq sig-
nals align with peaks in H3K4me3 and DHS signals; they exhibit lower
timing errors and higher firing rates (Fig. 5a). Spearman rank corre-
lation analyses reveal varying degrees of association between vari-
ables (Fig. 5b). This method was chosen due to its suitability for non-
normally distributed data and its ability to capture monotonic rela-
tionships, reflecting the ranked nature of our genomic features.
Pearson and Kendall’s Tau tests were conducted for comparison
(Supplementary Note 2.5). The consistently higher Spearman rank
correlations indicate a strong monotonic relationship, particularly
between DHS sites and firing rates, as well as between promoters and
firing rates, revealing how chromatin accessibility facilitates

replication initiation, even amid non-linear interactions. We
observed a moderate to strong negative correlation between GRO-
seq and misfits across all lines. This suggests that the replication
machinery may encounter fewer impediments in regions with active
transcription. A possible explanation is that transcriptionally active
regions are more likely to be in an open state, reducing mechanical
barriers to fork progression and lowering the chances of replication
stress. Moreover, transcription factor-binding sites have been shown
to enhance DNA replication, as evidenced by studies demonstrating
that these sites significantly increase replication efficiency15.

Furthermore, origin density strongly correlates with promoter
density13. This co-evolution of replication and transcription regulatory
regions further supports the idea that transcriptional activity not only
facilitates replication but also influences the efficiency and organisa-
tion of origins in mammalian cells. The strong correlation between
high origin firing rates and regions of active transcription, open
chromatin, and promoters provides further insight into genome-wide
coordination of replication and transcription. Notably, putative origins
are often located in open and early-replicating chromatin17,49 that is
well fitted by ourmodel. This synchronisation between replication and
transcription may prevent replication stress, particularly during late S
phase, aligning with the observation that transcriptionally active
euchromatin tends to replicate early, and silent heterochromatin
late50. Under replication stress, this coupling is adjusted, with initiation
and termination sites shifting to maintain the balance between repli-
cation and transcription, highlighting the intricate coordination that
sustains genome integrity51.

Discussion
In genome-wide simulations, our model effectively captured key
replication dynamics, including replication timing, fork directionality,
and inter-origin distances. Replication timing was fitted with high
precision across most of the genome, with only a few regions where
observations clearly deviate from simulations. While misfit distribu-
tions varied across different chromosomes and cell lines (Fig. 2), late-
replicating regions consistently exhibited higher misfit rates (Fig. 3).
This matches previous findings suggesting these regions are more
prone to replication challenges. Firing rates were also strongly
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Fig. 5 | Replication timing discrepancies and firing rate profiles correlate with
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negatively correlated with timing misfits; regions with infrequent ori-
gin firing are more susceptible to timing deviations. Additionally, non-
coding regions had a higher frequency of misfits, highlighting their
potential vulnerability.

We found that many replication-timing misfits occur in proximity
to fragile sites and long genes (Fig. 4). Our analysis pools data from
multiple studies and cell types21. While this provides a broad overview,
it does not account for the cell type-specific replication programmes
that underlie fragile site expression. Fragile sites are influenced by
transcriptional activity and replication timing, both of which vary
between cell types41,52. For instance, fibroblasts and lymphoblastoid
cells exhibit distinct replication initiation patterns, which affect the
timing and extent of fragility36. We observed consistent trends in the
correlation between fragility and replication timingmisfits across all 11
lines analysed, with H1 cells used as an illustrative example. This con-
sistency highlights the robustness of the approach in identifying
conserved replication dynamics and suggesting candidate regions and
genes of interest.

We also performed a statistical assessment of misfit distributions
in HCT116, a cell line with robust confirmatory data on fragile site
expression42. Our results indicate that although fragile sites in HCT116
frequently show statistically significant differences in replication mis-
fits, especially on certain chromosomes, this pattern is not uniform
across the entire genome. Further targeted studies could help clarify
how cell-line-specific factors shape localized vulnerability within a
broader replication error landscape. At the same time, by pinpointing
potential replication stress hotspots, our model provides a valuable
foundation for deeper experimental investigations into the molecular
underpinnings of fragility. Researchers with access to cell type-
matched Repli-seq and fragility data could refine this framework to
achieve more specific insights.

Additionally, we note that early-replicating fragile sites (ERFS),
often linked to highly transcribed genes53, represent another com-
pelling avenue for future work. For instance, the study by Tubbs
et al.54 demonstrates that poly(dA:dT) tracts can precipitate replica-
tion fork collapse in both early- and late-replicating domains, sug-
gesting that similar sequence features may underlie fragility across
diverse replication windows. However, robust, high-resolution data
on ERFS in human cell lines remain limited; most existing datasets
come from mouse53 or avian cells55, and cross-species mapping (e.g.,
via LiftOver) does not reliably capture species-specific replication
landscapes. Once comprehensive human datasets—ideally providing
cell-type-specific replication timing and validated ERFS coordinates—
become available, ourmodel stands ready as a practical tool to assess
how misfits at ERFS compare to CFSs and other fragile regions.

Although the model does not incorporate detailed molecular
mechanisms, regions with high origin firing rates were nonetheless
strongly associated with active transcription, open chromatin, and
promoter activity (Fig. 5). These findings align with established
knowledge, validating the model and underscoring its robustness.
Notably, many misfit regions overlap with known fragile sites or dis-
tinct genomic locations, leading to the hypothesis that the model can
refine the definition of fragile sites, distinguishing smaller, more
nuanced regions of fragility, or even identifying sites prone to repli-
cation stress. Such predictions highlight the model’s utility in unco-
vering unexplored genomic vulnerabilities, warranting further
experimental validation.

Our approach has various limitations. For instance, we assume
that each origin fires independently of others, which may not capture
the full complexity of origin licensing and activation (see Methods).
However, this simplification allows the model to fit human Repli-seq
data rapidly, making it a practical tool for genome-wide analyses. Even
so, in reality, a multiplicity of factors (e.g., ORC, Cdc6, and MCM
proteins) regulate complex pathways of origin licensing, while later
checkpoints and stress response pathways influence cell-cycle

progression56. Another limitation is that we take no account of
higher-order genome structure, but could incorporate data from, for
example, Hi-C6 and the position of R-loops, hairpins and
G-quadruplexes that are known to obstruct replication51. Furthermore,
our model could highlight the relationship between origins and DNA
break clusters, such as those found at timing transition regions, which
are prone to replication-transcription conflicts and genome
instability57. Additionally, because Repli-seq data represent population
averages, our analysis does not capture potential heterogeneity at the
single-cell level58,59. Future studies employing single-cell data could
thus provide finer resolution of replication dynamics.

Another nuance is that, while our model is quite universal in its
assumptions, applying it to organisms like S. cerevisiae (budding
yeast), which have smaller genomes and precisely located origins60,
may require adjusted parameterisation. In particular, the radius of
influence R becomes more critical in a smaller genome where it can
have a proportionally greater effect. Outside of autonomously repli-
cating sequences (ARS), themodel is expected to assign very lowfiring
rates by default. In Supplementary Note 2.6, we demonstrate the
application of our framework to yeast, where the model successfully
recovers >86% of known origin locations using only timing data, sup-
porting our hypothesis and highlighting the model’s general applic-
ability across eukaryotes. Further investigation in yeast will be
presented in a future study.

An exciting application of the model involves exploring the
impact of chemotherapies on replication dynamics, particularly those
therapies that target the Replication Stress Response (RSR) pathway
and its key signalling proteins. By simulating the inhibition of these
proteins, the model could provide valuable insights into how these
disruptions affect replication timing, origin firing, and potential cell
death61. This could facilitate prediction of which combination che-
motherapies might provide cost-effective approaches to optimise
cancer treatments.

Methods
Modelling assumptions
Our model is built on several key assumptions. First, the firing time of
an origin is modelled as an exponentially distributed random variable,
independent of forkmovement and of the firing times of other origins.
Second, replication forks progress at a constant speed, regardless of
thedynamics of originfiring. This constant speed assumption serves as
a critical constraint when benchmarking wild-type replication. If fork
speed were allowed to vary freely in space and time, it would be pos-
sible to adjust fork progression locally to match steep timing profiles,
resulting in multiple equally valid solutions and reducing the model’s
predictive power.

The origin firing rate encompasses origin licensing and activation,
plus contributions of all other proteins and pathways within this pro-
cess.While a strong assumption, it is justifiedby the fact that firing rates
effectively capture the collective outcome of all these underlying pro-
cesses without explicitly representing molecular detail. This makes the
model both tractable and capable of producing accurate genome-wide
predictions.We further sub-divide the genome into 1 kb intervals (sites),
and assign to each a non-zero firing rate determined by a governing
equation that links timing with firing. This resolution offers a balance
between computational efficiency and biological realism. Although any
site is a potential origin, our fitting algorithm can effectively turn off
potential origins by assigning them a suitably low firing rate.

We also intentionally omit finer details of strand synthesis. In
particular, we do not distinguish between leading and lagging strands,
nor do we model the formation and joining of Okazaki fragments. By
concentrating on the fundamental kinetics driving replication, we gain
a clearer understanding of how origin firing rates shape replication
timing without introducing unnecessary complexity.

We now present the main framework leading to Eq. (1).
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Mathematical modelling of replication
Consider a DNA molecule with n discrete genomic loci, where each
locus can potentially act as an origin that fires at rate f to initiate a
fork that progresses bidirectionally with speed v, typically measured
in kilobases per minute (kb/min). We aim to determine the average
time required for a site to either initiate replication or to be passively
replicated by an approaching fork (i.e., its expected replication time).
Initially, we assume that all origins fire at the same rate, f, but later
relax this assumption to allow for variations in firing rates across
different origins. In addition, by considering a sufficiently large
chromosome, we ensure that effects of chromosomal ends are neg-
ligible. Nonetheless, the framework can easily be extended to
account for such effects, though they are not critical for the broader
analysis.

Expected time of replication. Let T be the time a site takes to fire
or be passively replicated by a fork. We assume initially that all
origins fire at the same rate, f. One may think of T as an explicit
function of origin firing times Ai, where Ai

iid� Exp ðf Þ. In particular,
E½Ai�= 1=f . We index each site by its distance from the origin of
interest, given by ∣i∣. Notice that i = 0 corresponds to the focal
origin, and v is interpreted as the number of replicated sites per
time unit. We have

T = min
i

fAi + jij=vg ð2Þ

since it takes time ∣i∣/v for a fork initiated at site i to reach the origin of
interest. Next, we compute the cumulative distribution function. The
minimum in Eq. (2) is greater than some t if all terms are, which occurs
with probability

PðT > tÞ=
Y
i

minf1, expð�f ðt � jij=vÞÞg ð3Þ

since Ai > 0 and Ai�iid Exp ðf Þ. Hence, the expectation of replication
time for any one site is given by

E½T ;n�=
Z 1

0

Y
i

minf1, expð�f ðt � jij=vÞÞgdt ð4Þ

where the product is taken over all n sites. This integral can be
partitioned across each interval for which ∣i∣ ≤ vt ≤ ∣i + 1∣. Within
these intervals, integrands adopt the form ae−bt, thereby permit-
ting analytical evaluation. In the general case, the result depends
on the parity of n. See Supplementary Note 1.1 for an explicit
expression of E½T ;n�.

As n→∞, a general expression of the expected replication time for
each origin can be written as

E½T ;1� � 1
f

X1
k =0

e�f k2
=v � e�f ðk + 1Þ2=v

2k + 1
: ð5Þ

With v = 1.4 kb/min31, Fig. 6a shows the dynamics of E½T ;n� for
increasing values of n. By relating Eq. (5) to the family of theta and
Dawson functions, the following approximation holds (see Supple-
mentary Note 1.2 for a detailed proof)

E½T ;1� ’ 1
2

ffiffiffiffiffi
π
f v

r
: ð6Þ

Provided replication timing data fTjg1≤ j ≤n, we have the following
inversion

f j ’
π
4v

T�2
j ð7Þ

which provides a first estimate for the intrinsic firing rate of an origin,
given its timeof replication. Note that Eq.(7) is anapproximationunder
the specific assumption that firing rates are uniformly constant across
the genome, a simplification that, intriguingly, offers a reasonably
accurate initial estimate for the firing rate distribution in most
instances. The fidelity of this approximation is closely tied to fork
speed v and the average of the timing dataset, topics that will be ela-
borated subsequently.

A generalisation. Experimental data support the idea that different
origins fire at different rates62. While our introductory argument
assumes a constant firing rate f across the genome, we should, in
general, expect Ai ~ Exp(fi). Then, the replication time definition in Eq.
(2) should include the site-specific indexation, for 1 ≤ j ≤ n, as follows

Tj =minifAi + ji� jj=vg ð8Þ

with indexes congruent modulo n, that is, ji� jj 2 Z=nZ (see Supple-
mentary Note 1). Following a similar argument, the general expression
for E½Tj ;1�, with general firing rates {fi}, is given by

E½Tj ;1� =
X1
k =0

e�
P

jij≤ k ðk�jijÞf j + i=v � e�
P

jij ≤ k ðk + 1�jijÞf j + i=vP
jij≤ k f j + i

: ð9Þ

When fj = f,∀ j, Eq. (9) is reduced to Eq. (5). While Eq. (9) holds true for
an infinitely large genome, in practical terms this series can be limited
to 0≤k≤R < n/2, for some large enough R, leading to Eq. (1). This
parameter represents the radius of replication influence: the distance
within which neighbouring origins {j − R, . . . , j − 1, j + 1, . . . , j + R} are
assumed to affect the timing of a focal origin j. In other words, while
every firing origin does theoretically affect replication timing at any
other location, this effect decays rapidly with distance from the origin
of interest j. Numerically, the finite version of Eq. (9) should mimic the
average replication timing obtained from computational simulations,
and it will be crucial in solving the fitting problem efficiently. Ideally,
we would like to compute the rates ff jg1≤ j ≤n as a function of the
expectation of Tj. Our goal is then to find a solution to Eq. (9), given
data on fE½Tj ;n�g, for large n. Alternative frameworks inspired by the
analogy between DNA replication and crystal growth have been pre-
viously explored by Jun, Bechhoefer, and Rhind22,23,63, revealing other
relevant replication metrics, such as inter-origin distances64. Our
formulation extends these approaches by estimating originfiring rates
fromdiscrete replication timingdata across the entire humangenome,
which is discussed next.

Replication timing data
Replication timing data were sourced and processed from two key
databases: the Encyclopedia of DNA Elements (ENCODE65,66) and high-
resolution Repli-seq fromZhao et al.28. To ensure data consistency and
reliability, extensive filtering and scaling steps were performed on all
data sets. We analyse data from: HUVEC (human umbilical vein endo-
thelial cells), HeLa-S3 (clonal derivative of the parent HeLa, an
immortalised cervical cancer line), BJ (normal skin fibroblast), IMR90
(lung fibroblast), K562 (lymphoblast cells), GM12878 (lymphoblastoid
line), HepG2 (hepatocellular carcinoma line), MCF-7 (breast cancer
line), HCT116 (colorectal carcinoma line), plus H1 and H9 (embryonic
stem cell lines). Data for HUVEC, HeLa, BJ, IMR90, K562, GM12878,
HepG2, and MCF-7 cells were obtained from the ENCODE database
using the GRCh37 (hg19) human genome assembly65,66, while data for
HCT116, H1, and H9 cells were sourced from high-resolution Repli-seq,
using the GRCh38 (hg38) assembly28.

Regarding ENCODERepli-seq, timing data fromeach cell linewere
analysed across 6 cell cycle fractions: G1/G1b, S1, S2, S3, S4, and G2,
given as a wavelet-smoothed signal to generate a continuous portrayal
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of replication across the genome67. Importantly, we rescaled the ori-
ginal wavelet signal, initially normalised from 0 to 100, by a factor of 6
to better align with an approximately 8-hour S phase. Following stan-
dard Repli-seq methods, we applied a sigmoidal fit to the cumulative
replication fraction, Frep, to determine replication timing according to
Zhao et al.28. We consider the median replication time, trep, defined as
the bin value t where Frep(t) = 50%, indicating that half of the cell
population has completed replication (Fig. 6b). Although Eq. (9) the-
oretically represents the mean replication timing, it aligns closely with
the median observed in Repli-seq data, as replication timing distribu-
tions generally exhibit a near-symmetric sigmoidal pattern. Addition-
ally, the median is more robust to experimental noise and outliers,
making it a practical and reliable measure in high-throughput experi-
ments. Although recent studies have determined telomere timing
data68, we do not incorporate them into our analysis. Repli-seq data
shows consistent patterns across different cell lines. We present
representative results frommultiple lines, but specific analysesmay be
more suitable for certain cases, depending on the availability and
quality of the data. Although regions with repetitive sequences or low
complexity are often poorly mapped using Repli-seq data28,65, these
regions account for ~ 20% of the genome and show only a weak cor-
relation with high-misfit regions (phi coefficient = 0.21). Therefore, we

retain this data in our analysis, as its impact isminimal (Supplementary
Note 2.3).

Fitting algorithm
Equation (9) establishes a continuous, monotonic relationship
between each firing rate, fj, and its corresponding replication time, ~Tj .
Our aim is to infer the set of firing rates {fj} from experimentally
measured timing data {Tj}. Rather than relying on large-scale simula-
tions, we employ an iterative procedure that leverages the monotonic
relationship in Eq. (9): each firing rate is updated so as tominimize the
difference between ~Tj (predicted via Eq. (9)) and Tj (obtained from
Repli-seq data). In practice, for large n, Eq. (9) provides a good
approximation of ~Tj . We initialize each site j by

f jð0Þ=
π
4 v

T�2
j , ð10Þ

then iteratively refine its firing rate according to

f jðk + 1Þ= f jðkÞ
~TjðkÞ
Tj

 !α

, ð11Þ
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Beacon Calculus script

// Variables

// Chromosome length in kilobases

L = 249251;

// Fast rate

fast = 100000;

// Fork velocity in kilobases per minute

v = 1.4;

// Process definitions

ORI[i,fire] = {~chr?[i],fire}.(FL[i]||FR[i]);

FR[i] = {chr![i],fast}.[i < L] -> {~chr?[i+1],v}.FR[i+1];

FL[i] = {chr![i],fast}.[i > 0] -> {~chr?[i-1],v}.FL[i-1];

// Process initiation

ORI[0,fire_0] || ORI[1,fire_1] || ORI[2,fire_2]

|| ORI[3,fire_3] || ORI[4,fire_4] || ORI[5,fire_5]

|| ORI[6,fire_6] || ORI[7,fire_7] || ORI[8,fire_8]

|| ORI[9,fire_9] || ORI[10,fire_10] || ... ;
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Whole-genome fitting Convergence of the fitting algorithm
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- fork speed (1.4 kb/min)
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a bExpected time of replication under uniform firing Repli-seq data fitting

Fig. 6 | Fitting the model. a Replication asymptotics under uniform firing: loga-
rithmic plot of the expected replication time,E½T ;n�, as a function of the firing rate,
f, and the number of potential origins, n (spaced at 1 kb intervals), for 1 ≤ n <∞, with
v = 1.4 kb/min. As n → ∞,E½T ;n� approximates an inverse power law (blue). b Curve
fitting for cumulative replication in S phase. Red markers depict example data
points from a high resolution Repli-seq heatmap that shows the cumulative per-
centage of completed replication across 16 S phase bins. The blue line is the curve
fitted to this data, while the dashed grey line indicates themedian replication time,
trep (the instant in S phase when 50% of replication is achieved across the cell
population). c Whole-genome mean squared error between simulated timing
profiles and real data for 7 cell lines, in min2. Fitting each line took ~3min on a HPC

platform (one CPU). d Progression of the fitting algorithm over 20 iterations for
chromosome 2 in the BJ line on firing rates (above), with iteration 0 corresponding
to the initial inverse power law estimate, given by Eq. (7), and the corresponding
timing profile (below). eObserved (Repli-seq) timing against the simulated profiles
for different lines and genomic regions. f Model written in the Beacon Calculus
process algebra. Origin firing processes take their location, i (1-kb resolution), and
firing rate fire, as parameters, triggering two replication fork processes, FL (left-
moving) and FR (right-moving). Replication terminates when all locations have
been replicated. The simulation begins by invoking the ORI processes, where
fire_i corresponds to the firing rate values for each origin i, as determined by
fitting Eq. (1).
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where ~TjðkÞ is the predicted replication time at iteration k, and Tj is the
experimentally observed timing. The exponent α governs how
strongly firing rates respond to each site’s misfit, behavingmuch like a
fixed-point iteration or an inexact gradient descent. Numerical
experiments suggest α = 2 provides a robust balance between speed
of convergence and numerical stability, but other choices of α are
feasible if the data require finer control or if a gradient-based approach
is desired. Every 1 kb segment is treated initially as a potential origin,
but the algorithm’s updates naturally drive most firing rates to
negligible values, reflecting the selective activation of origins in the
genome. The radius of neighbouring influence, R, may be refined for
optimisation. We track convergence by measuring each site’s fit error,
defined as the squared difference ðTj � ~TjðkÞÞ

2
, in min2. Because the

method directly leverages the convolution-like form of Eq. (9), it
avoids repeating large-scale simulations. This efficiency means that
fitting 3.2million sites per humangenome can typically be donewithin
a fewminutes on a single Intel Ice Lake CPU (Fig. 6c–e). Thus, although
we rely on simple iterative corrections, the monotonic structure of ~Tj

with respect to fj ensures the scheme converges reliably, provided α
and other parameters remain moderate. We have added a more
detailed discussion of this algorithm, including its convolution
interpretation, in Supplementary Note 2.2.1.

Simulations
To simulate replication, we use Beacon Calculus (bcs)27, a process
algebra designed for simulating biological systems. In this frame-
work, each component of the system is treated as a process capable
of executing certain actions, each governed by an exponential rate.
The simulation uses amodified Gillespie algorithm, allowingmultiple
processes to run in parallel, a property that is especially important
for modelling DNA replication, where many events occur con-
currently. In our case, we represent replication with three processes:
replication origin firing (ORI), and passive replication by left- (FL),
and right-moving forks (FR). Each process is associated with a spe-
cific position at a given resolution on a chromosome of length L, and
origins have an additional parameter, the firing rate, fire, or f in our
model (Fig. 6f).

In each bcs simulation, when a process is activated and its asso-
ciated action is executed (i.e., when a random variable is realised), the
time and location of that event is recorded. Our model operates at a 1
kb resolution, so each action is assigned to a specific 1 kb segment;
consequently, the firing of an origin (ORI) or the passive replication by
a fork (FL or FR) is registered as an event within that segment. All sites
are treated as potential origins; however, the fitting algorithm effec-
tively turns them on or off by assigning them high or near-zero firing
rates, respectively. The model is flexible and can be adapted to dif-
ferent resolutions. In our current implementation, an origin is defined
as corresponding to a 1 kb segment. This computational imple-
mentation is independent from the analytical approach described
above, providing a means to confirm the closed-form mathematical
analysis and explore additional replication features. Further details on
the bcs formalism and its usage are discussed in Supplementary
Note 2.1.

In bcs, v is treated as the constant replication rate of a
moving fork, i.e., the parameter of an exponential distribution
governing the time required to passively replicate one site. This
differs from the constant fork speed assumption underlying Eq.
(9). Specifically, in the bcs case, the time Fk required for a fork to
replicate k consecutive sites follows an Erlang(k, v) distribution,
meaning that E½F ji�jj�= ji� jj=v, which mirrors the approximation
used in Eq. (8). Therefore, when averaged over a sufficiently large
number of simulations, stochastic deviations in numerical simu-
lations become negligible and they do not compromise the
broader analysis or conclusions. To track the progress of repli-
cation, the model marks regions of the chromosome that have

been replicated, allowing us to monitor replication dynamics
accurately. In all bcs simulations, fork speed was set to 1.4 kb/
min31, and results were averaged over 500 simulations, with the
radius of influence set to R = 2000 kb, as previously defined.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The replication timing data used in this study were obtained from the
Encyclopedia of DNA Elements (ENCODE) using the GRCh37 (hg19)
assembly65,66 and fromhigh-resolutionRepli-seq aligned to theGRCh38
(hg38) assembly28. RNA-seq18, ChIP-seq19, and GRO-seq20 datasets were
also obtained from ENCODE. Additionally, GRO-seq data used in this
study were accessed from the Gene Expression Omnibus (http://www.
ncbi.nlm.nih.gov/geo/) under accession numbers GSE62046,
GSE94872, and GSE60454. Fragile site locations were sourced from the
publicly available HumCFS database21, accessible at https://webs.iiitd.
edu.in/raghava/humcfs/. All these data are publicly available.

Code availability
The source code implementing the main fitting algorithm, together
with the replication timingfit error andoriginfiring rate bedgraphfiles,
is available at: https://github.com/fberkemeier/DNA_replication_
model.git (version 1.0.0, https://doi.org/10.5281/zenodo.15337522)69.
Beacon Calculus simulations were carried out using version 1.1.0 of
bcs, accessible at https://github.com/MBoemo/bcs27. Supplementary
Note 2 provides additional examples of bcs scripts and optimisation
algorithms.
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Supplementary Information

Supplementary Note 1: Mathematical notes

1.1 Expected time of replication

Without loss of generality, we assume a ring network (periodic DNA) to enforce symmetry of
replication with respect to a focal origin. In a large genome, this periodic assumption has minimal
influence across most regions, apart from the chromosome ends.

Let T be the time a site takes to either fire (if it is a replication origin) or be replicated by
an incoming fork. We can think of T as an explicit function of the origin firing times Ai, where

Ai
iid∼ Exp(f). In particular, E[Ai] = 1/f . We index each site by its distance from the origin of

interest, given by |i|. Notice that i = 0 corresponds to the focal origin, and v is interpreted as the
number of replicated sites per time unit. We have

T = min
i
{Ai + |i|/v} (S1)

since it takes time |i|/v for a replication fork initiated at site i to reach the origin of interest. Then,

P (T > t) =
∏
i

P (Ai > t− |i|/v) =
∏
i

min{1, exp(−f(t− |i|/v))} (S2)

since Ai > 0 and Ai
iid∼ Exp(f). Hence, the expectation of the replication time for any one site is

given by

E[T ] =
∫ ∞

0
P (T > t) dt =

∫ ∞

0

∏
i

min{1, exp(−f(t− |i|/v))} dt. (S3)

This integral can be partitioned across each interval for which |i| ≤ vt ≤ |i + 1|. Within these
intervals, the integrands adopt the form ae−bt, thereby permitting analytical evaluation. A few
particular cases include:

• One origin (n = 1):

E[T ; 1] =
∫ ∞

0
e−ftdt =

1

f
(S4)

• Two origins (n = 2):

E[T ; 2] =
∫ 1

v

0
e−ftdt+

∫ ∞

1
v

e−f(2t−1/v)dt =
1

f

(
1− 1

2
e−

f
v

)
(S5)

• Three origins (n = 3):

E[T ; 3] =
∫ 1

v

0
e−ftdt+

∫ ∞

1
v

e−f(3t−2/v)dt =
1

f

(
1− 2

3
e−

f
v

)
(S6)

• Four origins (n = 4):

E[T ; 4] =
∫ 1

v

0
e−ftdt+

∫ 2
v

1
v

e−f(3t−2/v)dt+

∫ ∞

2
v

e−f(4t−4/v)dt =
1

f

(
1− 1

12
e−4 f

v − 2

3
e−

f
v

)
(S7)

1



where E[T ;n] ≡ E[T ] for each n. In the general case, the result depends on the parity of n. When
n is odd, for each k, there are 2 origins at a distance of k = 1, 2, . . . , (n − 1)/2 from the origin of
interest. Adding up these distances leads to

E[T ;nodd] =

(n−3)/2∑
k=0

∫ (k+1)/v

k/v
e−f((2k+1)t−k(k+1)/v) dt+

∫ ∞

(n−1)/(2v)
e−f(nt−(n−1)(n+1)/(4v)) dt, (S8)

where the last term is just the k = (n− 1)/2 term of the sum with the upper limit replaced by ∞.
Solving the integrals yields

E[T ;nodd] =
1

f

(n−3)/2∑
k=0

e−fk2/v − e−f(k+1)2/v

2k + 1
+

e−f(n−1)2/(4v)

n

 . (S9)

When n is even, for each k there are 2 origins at a distance of k = 1, 2, . . . , (n − 2)/2, and then
there is 1 origin at a distance of n/2. Again, we add up the distances, each twice, but since there
is only one origin at a distance of n/2, the very last distance sum is n2/4. So, we get

E[T ;neven] =

(n−2)/2∑
k=0

∫ (k+1)/v

k/v
e−f((2k+1)t−k(k+1)/v)dt+

∫ ∞

n/(2v)
e−f(nt−n2/(4v))dt. (S10)

Solving the integrals yields

E[T ;neven] =
1

f

(n−2)/2∑
k=0

e−fk2/v − e−f(k+1)2/v

2k + 1
+

e−fn2/(4v)

n

 . (S11)

Using the ceiling function ⌈·⌉ to handle parity, a general expression for each origin, and any n, is

E[T ;n] ≡ 1

f

⌈(n−3)/2⌉∑
k=0

e−fk2/v − e−f(k+1)2/v

2k + 1
+

e−f(⌈(n−1)/2⌉)2/v

n

 . (S12)

In particular,

E[T ;∞] ≡ lim
n→∞

E[T ;n] =
1

f

∞∑
k=0

e−fk2/v − e−f(k+1)2/v

2k + 1
(S13)

which is Equation (5). Equation (1) arises from a similar reasoning, achieved by expressing the
product of exponentials as a single exponential of sums. Although the series E[T ;n] converges for
f > 0, its closed-form expression is not known. If we rescale time T̃ ≡ fT , t̃ ≡ ft, and define
x ≡ f/v, we may rewrite Equation (S12) in a more compact, non-dimensional form

E[T̃ ;n] ≡
⌈(n−3)/2⌉∑

k=0

e−xk2 − e−x(k+1)2

2k + 1
+

e−x(⌈(n−1)/2⌉)2

n
. (S14)

As n → ∞, we have

E[T̃ ;∞] ≡ lim
n→∞

E[T̃ ;n] =
∞∑
k=0

e−xk2 − e−x(k+1)2

2k + 1
=

∑
k∈Z

e−xk2

1− 4k2
. (S15)

A few interesting observations can be made regarding the upper bounds of this limit.

2



1.2 On Dawson function estimates

The series g(x) ≡ E[T̃ ;∞] is related to the family of theta functions1, allowing us to express it in
terms of

ϑ(x) =
∑
k∈Z

e−π(xk)2 (S16)

which satisfies ϑ(1/x) = xϑ(x). From Equation (S15), g satisfies

g(x) + 4g′(x) =
∑
k∈Z

e−xk2 = ϑ(
√

x/π), (S17)

and thus

g(x) = e−x/4

∫ x/4

0
ey ϑ(2

√
y/π) dy. (S18)

In particular, for small x we have

g(x) =
√
πD+(

√
x/2) +O(xe−π2/x) (S19)

where

D+(z) = e−z2
∫ z

0
et

2
dt =

1

2

∞∑
n=0

(−1)nn!

(2n+ 1)!
(2z)2n+1 (S20)

is the Dawson function2. A less accurate estimate is then g(x) =
√
πx/2+O(x3/2). Various upper

bounds may also be obtained this way. Reverting the change of variables, we get

E[T ;∞] ≃ 1

2

√
π

fv
(S21)

as in Equation (6).
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Supplementary Note 2: Computational methods and data

2.1 Beacon Calculus model

As discussed in Boemo et al.3, a minimal replication model in bcs is built around three core
processes: replication origins (ORI), left-moving forks (FL), and right-moving forks (FR). These
processes are positioned along a chromosome of length L, where each process has a unique integer
parameter, i, representing its specific location between 1 and L. In addition, the origins have a
replication initiation rate, fire (or f in our model), which can be extended to include licensing
probabilities in more advanced setups. To track which positions have been replicated, bcs uses
markers called beacons. Whenever a fork replicates position i, it dispatches a beacon on the
chr channel with the parameter i. This beacon indicates that replication is complete at that
coordinate, ensuring the model can monitor progress across the entire chromosome.

The following is an example of the bcs script with 10 replication origins equally spaced over
100 sites

// DNA Replication

// Variables

// Chromosome length

L = 100;

// Fast rate

fast = 100000;

// Fork velocity

v = 1.4;

// Process definitions

ORI[i,fire] = {~chr?[i],fire}.(FL[i]||FR[i]);

FR[i] = {chr![i],fast}.[i < L] -> {~chr?[i+1],v}.FR[i+1];
FL[i] = {chr![i],fast}.[i > 0] -> {~chr?[i-1],v}.FL[i-1];

// Process initiation

ORI[1,0.06048832790213383] || ORI[12,0.002045183033099289]

|| ORI[23,0.0012753405213046796] || ORI[34,0.0011945930278953077]

|| ORI[45,0.001035526093646997] || ORI[56,0.0011165358858784408]

|| ORI[67,0.002560893635329413] || ORI[78,0.003411336829553979]

|| ORI[89,0.0022730688407988954] || ORI[100,0.0038028859830789045];

// End

A periodic version of DNA replication can be achieved by changing both FR and FL process
definitions to

FR[i] = {chr![i],fast}.(([i<L] -> {~chr?[i+1],v}.FR[i+1]) || ([i==L] -> {~chr?[0],v}.FR[0]));
FL[i] = {chr![i],fast}.(([i>0] -> {~chr?[i-1],v}.FL[i-1]) || ([i==0] -> {~chr?[L],v}.FL[L]));
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2.2 Fitting the model

2.2.1 Main algorithm

The following code presents the main fitting function, fitfunction, used in the fitting algorithm
described in the main text. It provides an efficient way of computing Equation (1) to mimic bcs

simulations for non-uniform firing rates. fitfunction accepts four arguments: list (a data vector
with the RT profile of the entire genome), v0 (average fork speed, usually set to 1.4 kb/min), and
st0 (radius of influence R, as dedfined in the main text). The first guess x00 is then constructed
based on list, by Equation (7). We use an adapted version of np.roll(). Data was processed via
the Python extension pyBigWig4. See https://github.com/fberkemeier/DNA replication model.
git for further details.

# Import dependencies

import cProfile

import math

from time import monotonic

from typing import Any

import numpy as np

# Main function

def fitfunction(list, v0, st0):

timel = list

v = v0

st = st0

exp_v = np.exp(-1/v)

x00 = np.array([(math.pi/(4*v))*i**(-2) for i in timel])

# VECTORIZED APPROACH

def fast_roll_add(dst, src, shift):

dst[shift:] += src[:-shift]

dst[:shift] += src[-shift:]

def fp(x, L, v):

n = len(x)

y = np.zeros(n)

last_exp_2_raw = np.zeros(n)

last_exp_2 = np.ones(n)

unitary = x.copy()

for k in range(L+1):

if k != 0:

fast_roll_add(unitary, x, k)

fast_roll_add(unitary, x, -k)

exp_1_raw = last_exp_2_raw

exp_1 = last_exp_2

exp_2_raw = exp_1_raw + unitary / v

exp_2 = np.exp(-exp_2_raw)

# Compute the weighted sum for each j and add to the total

y += (exp_1 - exp_2) / unitary

last_exp_2_raw = exp_2_raw

last_exp_2 = exp_2

return y

def fitf(time, lst, x0, j):

return x0[j] * (lst[j]/time[j])**(2)

def cfit(time, lst, x0):

result = np.empty_like(x0)
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for j in range(len(x0)):

if fitf(time, lst, x0, j) < 10**(-20):

result[j] = 10**(-20)

elif abs(time[j] - lst[j]) < .5:

result[j] = x0[j]

else:

result[j] = fitf(time, lst, x0, j)

return result

xs = x00

my_list = [’:.20f’.format(i) for i in xs]

return my_list

2.2.2 Effects of fork speed on replication timing misfits

Our model pairs a fixed fork speed with stochastic origin firing, imposing a natural limit on how
steeply replication timing can transition from early to late. Even if more origins fire in a region,
they can only flatten this slope; they cannot exceed the fork-speed bound. Consequently, any
empirical data showing sharper transitions—often due to fork stalling or replication stress—will
remain under-fitted (i.e., predicted to replicate too early). While the fitting algorithm may raise
firing rates to accommodate steep timing, it does not systematically inflate them; once the constant-
speed ceiling is reached, persistent misfits highlight regions where forks slow or stall beyond our
model’s assumptions.

This is most clearly illustrated by thinking about the timing curve of a single-origin system:
there will be a sharp point at the origin and the gradient elsewhere will be determined by the rate
of fork movement. Adding additional origins at any firing rate can only decrease the magnitude of
the curve’s gradient.
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Supplementary Figure 1: Effects of fork speed on replication timing profiles.
Illustration of how a fixed fork speed constrains the steepness of the replication-timing curve. Left: A single-origin
“peak” shows that, if the replication fork moves more slowly (gray line, v = 0.7 kb/min), the slope is steeper than
a faster fixed fork speed can reproduce (red line, v = 1.4 kb/min). Allowing extra origins to fire simply flattens
slopes rather than raising them above the fork-speed limit. Right: In a multi-origin context, empirical data (gray)
can exhibit sharper early-to-late transitions than the model (red) allows. Once fork speed (black diagonal line) is
reached, the model cannot replicate any faster, leading to a systematic underestimation of the replication time.
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2.3 Data mappability

Repli-seq data often face mappability issues, particularly in regions with repetitive sequences or low
complexity, where short DNA reads cannot be accurately mapped5,6. Based on data from Hansen
et al.5, these regions of low or problematic mappability account for approximately 20% of the whole
genome and around 25% of high-error regions (defined as those with errors exceeding 102 min),
highlighting their relevance in areas prone to replication timing errors. The mean size of these gaps
is approximately 42.37 kb (Supplementary Fig. 2). On average, we observed a phi coefficient of
0.21 when comparing high-error regions and problematic loci, indicating a weak positive correlation
between the two. This coefficient, derived from a contingency table, suggests that while there is
some overlap between high-error and masked regions, the correlation is not strong. Despite this
overlap, mappability issues do not significantly affect overall replication timing analyses, as the
majority of high-error regions occur in well-mapped genomic areas, ensuring the reliability of the
data. Given the low phi coefficient, we do not exclude these data from our analysis, since the
presence of low mappability regions does not appear to be a major factor influencing replication
timing errors, allowing us to retain these data in our analysis without compromising its validity.
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Supplementary Figure 2: Distribution of problematic mappability region sizes.
Histogram showing the distribution of region sizes with low or problematic mappability (in kilobases) across the
genome. These regions are excluded from replication timing analyses due to difficulties in accurately mapping
sequencing reads. The majority of these regions are small, with peaks around 1-5 kb and another noticeable peak
around 20 kb. The mean size of these regions is approximately 42.37 kb.
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2.4 Fragility analysis in HCT116

This section expands upon the main text’s examination of fragile sites and replication-timing
misfits, with a focus on whether specific loci in HCT116 display distinctive error patterns. HCT116
was chosen since confirmatory data on fragile site expression is available6,7. The analyses presented
here include a high-resolution mapping of misfit regions and additional statistical comparisons of
fragile versus non-fragile sites. These efforts help clarify whether fragile sites generally stand out
from the rest of the genome in terms of replication timing errors, or if notable differences only arise
at certain chromosomes or loci.

2.4.1 Misfit regions in HCT116

We begin by compiling a chromosome-scale overview of replication misfits in HCT116, focusing on
regions where high error levels overlap with known fragile sites. Supplementary Fig. 3 aligns misfit
values with fragile sites, making it possible to see whether errors concentrate in these loci or appear
at similar levels elsewhere in the genome. In some cases, fragile sites show misfits comparable to
surrounding regions. In others, they deviate markedly, suggesting that local or cell-line-specific
factors may be at play. An accompanying table (supplementary file ‘misfit_genes_HCT116.xlsx’)
lists each gene found within high-misfit regions, along with coordinates, length, and fragile-site sta-
tus. This resource helps identify instances where replication-timing anomalies coincide with genes
of particular interest, such as large or transcriptionally active loci. By linking these observations
to fragile-site positions, we can pinpoint areas that may warrant further study. All downstream
analyses exclude centromeres, telomeres, assembly gaps, and bins with low mappability.
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Supplementary Figure 3: Whole-genome misfit profiles of HCT116 cells.
Error heatmaps produced by the main model fitted to Repli-seq data for all chromosomes of HCT116 cells. Black
bands indicate fragile sites reported in the HumCFS database, whereas gray bands denote poorly fit segments,
including centromeres, telomeres, and regions with known mappability issues.
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2.4.2 Statistical analysis

To investigate whether fragile sites (FS) differ from non-fragile sites (nonFS) in replication error
distributions, we carry out two complementary comparisons. First, we examine the entire set of
genomic positions, comparing all FS with nonFS without applying any error threshold. Second, we
introduce a cutoff of 102 (min2) to define high-error positions and compare FS and nonFS solely
within this subset. By setting the threshold at 102, we capture sufficiently large samples of positions
that exceed moderate error values, ensuring both statistical power and biological relevance. This
two-tiered approach enables us to assess broad differences in replication error profiles (the full
dataset) as well as to focus specifically on positions where replication stress is presumably more
pronounced (the high-error subset).

When we consider all genomic positions, FS and nonFS show highly significant differences
in both replication error and replication timing. Welch’s t-tests, Mann–Whitney U tests, and
Kolmogorov–Smirnov tests all return near-zero p-values (Supplementary Fig. 4a), reflecting sig-
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Supplementary Figure 4: Error statistics in HCT116 fragile sites.
a Error distribution on fragile sites (FS) and non-fragile sites (nonFS). Left of histogram: contingency tables for
observed and expected counts of FS/nonFS and high/low errors, and Chi-square results, with an error threshold of
102. Right: statistical tests results between FS and nonFS error distributions. b Overview of how replication errors
and fragile sites distribute across multiple comparisons: (i) The fraction of high-error loci among all loci on the
chromosome, (ii) the fraction of high-error loci at FS vs. the fraction of high-error loci at nonFS (both normalized
by total chromosome length), (iii) the fraction of FS among high-error loci vs. the fraction of FS among all loci, and
(iv) the fraction of high-error FS among all FS vs. the fraction of high-error nonFS among all nonFS. c Relication
timing vs. error at poorly fitted fragile sites. d Heatmap displaying the high error fractions of fragile sites, across all
sites reported in HumCFS. Well-documented (FRA3B and FRA16D) and less established (FRA2F, FRA2G, FRA2I,
FRA4C, and FRA7K) FS in HCT116 are highlighted.
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nificant shifts in their means, medians, and overall shapes. Large negative t-values indicate that,
on average, FS exhibit lower errors and replicate earlier than nonFS. We also compare the one-
dimensional error distribution at FS with that of the genome at large using the Kullback–Leibler
divergence DKL ≈ 0.015, suggesting a moderate departure between these distributions. Extending
this analysis to the two-dimensional time-error distribution yields a slightly higher DKL ≈ 0.03,
confirming that FS differ from the genome in a joint replication context, yet not to an extreme
degree.

Focusing on regions with errors above 102, we see a strong association between FS status
and error classification (Chi-square = 1694.078, p ≈ 0; contingency table in Supplementary Fig.
4a). Restricting our analysis to these high-error loci, Welch’s t-test suggests that the mean error is
slightly higher at FS (t = 3.707, p = 2.1×10−4), while replication timing is earlier (t = −6.172, p =
6.78× 10−10). The two-dimensional Hotelling’s T 2 result (T 2 = 69.748, p = 7.77× 10−16) confirms
that FS maintain distinct replication features even within this high-error subset. In other words,
FS are somewhat under-represented among positions exceeding the threshold, yet those that do
exceed 102 display a characteristic profile of modestly elevated errors and notably earlier replication
timing compared to other high-error regions. These findings also point to potential fragile sites
in HCT116 that remain understudied, highlighting them as candidates for closer experimental
investigation.

At the genome-wide level, these findings suggest that FS often exhibit fewer extreme errors
than would be expected by chance. However, more detailed analyses of specific chromosomes,
where FS in HCT116 are well documented8,6, reveal substantial variability in how these errors
manifest across different genomic contexts. Supplementary Fig. 4b shows the chromosome-based
distributions of errors and FS vs. nonFS, illustrating the FS-dependent nature of replication-
stress patterns. Of particular note is the increasing high-error fraction on chromosomes 3 and
16, and the distinct dynamics on chromosome 19. Supplementary Fig. 4c highlights high-error
time–error distributions of poorly fit FS, while Supplementary Fig. 4d presents the overall high-
error fraction in FS from the HumCFS database9. Interestingly, our model flags the rare fragile
site FRA16A as especially problematic10,11 and predicts replication-stress signatures at the well-
established FRA3B12,13. In contrast, the model appears to fit well at FRA16D, which aligns with
studies challenging its instability in HCT1167. Our analysis also identifies less established FS in
HCT116—FRA2G, FRA2I, and FRA7K7,14,15—as potentially of interest.

Overall, these findings show that although fragile sites frequently show statistically signif-
icant differences in replication misfits, particularly on certain chromosomes, this pattern does
not hold uniformly across the entire genome. Further targeted studies may help untangle how
cell-line-specific factors shape these localized vulnerability profiles within broader replication er-
ror landscapes. Nonetheless, by highlighting potential hotspots of replication stress, our model
provides a valuable starting point for deeper experimental investigations into the molecular ba-
sis of fragility. All tests and supporting code are provided in the GitHub repository: https:
//github.com/fberkemeier/DNA replication model.git.
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2.5 Data correlations

Here, we present a comparison of different statistical tests applied to the datasets discussed in
the main text. This analysis evaluates the relationships between replication timing error, firing
rates, and transcriptional or chromatin features, providing insights into the suitability and results
of Pearson, Spearman rank, and Kendall’s tau tests for these data. Pearson, Spearman rank, and
Kendall’s tau offer distinct advantages based on the nature of the data and relationships analysed.
Pearson is suited for continuous, normally distributed data with linear relationships, while Spear-
man rank excels with non-linear or ordinal data by capturing monotonic trends through ranked
values. Kendall’s tau is particularly effective for smaller datasets, using concordant and discor-
dant pairs to measure associations. Given the non-linear and ranked nature of replication metrics,
Spearman rank is ideal for our analysis. Supplementary Fig. 5 shows the correlations between
replication timing error, firing rates, and transcriptional or chromatin features, demonstrating the
relevance of these tests to our data.
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Supplementary Figure 5: Correlations between replication, transcription and chromatin data.
Heatmap displaying the Spearman, Kendall’s Tau, and Pearson correlation coefficients between origin firing rates
and fit errors with transcriptional and chromatin features for HeLa, HUVEC, and K562 cell lines. All tests returned
p-value < 10−15.
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2.6 Theoretical digression: Application to Saccharomyces cerevisiae

Although our primary analyses focus on the human genome, the underlying framework is fully
generalizable to other eukaryotes. To demonstrate this, we apply our fitting pipeline to S. cere-
visiae (budding yeast) replication-timing data16,17, where the most active origins are known18. In
particular, we test whether our model is able to recover the well-established origins in yeast. To
adapt to yeast’s shorter genome, we constrain the neighbour-sum in Equation (1) for each site j to

max(1− j,−k) ≤ i ≤ min(n− j, k) (S22)

instead all |i| ≤ k. Choosing the radius of influence R to equal each chromosome’s length then
handles chromosome ends automatically, without altering any core assumptions.

To assess whether our model can recover known replication origins in yeast, we fit firing rates
to replication timing data from Müller et al.16 (Supplementary Fig. 6a), and compare the results to
autonomously replicating sequences (ARS) annotations, independently obtained from the OriDB
database18, selecting those origins marked as ‘Confirmed’ or ‘Likely’. This yields a one-dimensional
profile of firing rates across the genome, along with a binary indicator vector specifying whether
each genomic position falls within an annotated origin interval. We find that firing rates are
systematically higher within these intervals (Supplementary Fig. 6b), and that the model recovers
> 86 % of the origins at high-firing rates within ± 2 kb. To quantify this enrichment, we applied
a Mann–Whitney U test and a point-biserial correlation to evaluate the association between the
binary origin label and the continuous firing rate. These tests produced highly significant results
(p ≤ 10−12), indicating that the model successfully recovers regions of known origin activity.
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Replication timing profiles across 16 chromosomes of S. cerevisiae
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Supplementary Figure 6: Fitting the model in S. cerevisiae.
a Observed replication timing from Müller et al.16 compared with simulated timing profiles across the entire yeast
genome, fitted using Equation (1) on each full chromosome. b Examples of fitted firing-rate profiles for chromosomes
4 and 12, highlighting sharp peaks at known origin locations from the OriDB database18 (‘Confirmed’ and ‘Likely’).
The model infers these peaks from timing data alone, effectively suppressing firing activity in non-origin regions and
recovering known origin locations without prior information.
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Supplementary Tables

Supplementary Table 1: Table listing the ten largest genes exhibiting misfits across all chromosomes, ranked
from largest to smallest (left to right). Genes located at fragile sites are annotated as follows: C for common fragile
sites, R for rare fragile sites, and CR for genes reported at both. All gene annotations refer to H1 cells with Repli-seq
data aligned to the hg38 genome.

Chr Misfit genes across common (C) and rare (R) fragile sites

1 AGBL4C KAZNC NEGR1C RABGAP1LC RYR2 DNM3 ST6GALNAC3C KCNH1 HMCN1 PLD5

2 LRP1BR DPP10R NRXN1R THSD7BR NCKAP5R CNTNAP5R ALK AFF3 MYT1LR KCNS3C

3 FHITC RBMS3C TBC1D5 ROBO1 LSAMP CADM2 CACNA2D3 EPHA6C ZBTB20 LPP

4 FSTL5C LRBAC CFAP299C RASGEF1BC ANK2 TENM3 SORCS2 STK32B MAML3 AFG2A

5 PDE4DC TENM2 CDH18C SGCD SLIT3 SPOCK1 FER EDIL3C HCN1 FBXL7

6 PRKNC NKAIN2C GRIK2 ADGRB3 GMDS FARS2 PKHD1C TRDN SLC35F1 ZDHHC14

7 CNTNAP2C MAGI2C DPP6C SDK1C IMMP2L DGKB SUGCT BBS9 CDK14 ELMO1C

8 NRG1 VPS13B NKAIN3 UNC5D XKR4 EXT1C MCPH1 ASPH EBF2

9 PTPRD LINGO2 ADAMTSL1 TRPM3 DENND1A BNC2 ROR2C NFIB RFX3 SLC24A2

10 PCDH15R NRG3R KCNMA1R GRID1R PARD3 ANK3C SORCS1 PLXDC2 CACNB2 ABLIM1

11 DLG2C LRRC4CC CNTN5 NELL1CR TENM4 NAV2CR KIRREL3 GRM5 SOX6CR DCDC1

12 ANKS1BC MGAT4CC TMTC2C ANO4 TRHDE CNTN1 SLC2A13 ABTB3 PTPROR SLCO1B3-B7

13 NBEAC MYO16 KLHL1 DCLK1 CLYBL FREM2 CLDN10 CAB39L SCEL TNFRSF19

14 RAD51BC GPHN TTC6 TSHR TRAF3 CDC42BPB BAZ1A MIA2 LIN52 SOS2

15 UNC13C FMN1 ADAMTS17 IGF1R APBA2 LRRC49 RNF111 RFX7 SHC4 TRPM7

16 WWOXC RBFOX1C CDH13 GSE1 FTO ZNF423 ITFG1 ACSM3 ADAMTS18 CFDP1

17 ASIC2 SHISA6 ACACA SPECC1 ARSG VMP1 MAP2K4R SMURF2 TADA2A DHRS7B

18 DCC DLGAP1 CCDC178C L3MBTL4 LDLRAD4 KIAA1328 NEDD4LC LOXHD1 MAPK4C CCDC102B

19 MARK4C INSR MUC16 TDRD12 ZNF83 URI1 ZNF569C NLRP11 AP1M1 NLRP4C

20 PTPRT PLCB1C PLCB4 PAK5 EYA2 RIN2 SYNDIG1 NCOA3 ZFP64 RALGAPB

21 CHODL GET1-SH3BGR TTC3 SH3BGR

22 BCR DGCR2 GAB4 YPEL1 PPIL2 MAPK8IP2 ARSA

Note: Gene names are presented in italics following conventional nomenclature.
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