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Abstract

The aqueous phase in traditional microfluidics is usually confined by solid walls; flows through such systems are often
predicted accurately. As solid walls limit access, open systems are being developed in which the aqueous phase is
partly bounded by fluid walls (interfaces with air or immiscible liquids). Such fluid walls morph during flow due to
pressure gradients, so predicting flow fields remains challenging. We recently developed a version of open
microfluidics suitable for live-cell biology in which the aqueous phase is confined by an interface with an immiscible
and bioinert fluorocarbon (FC40). Here, we find that common medium additives (fetal bovine serum, serum
replacement) induce elastic no-slip boundaries at this interface and develop a semi-analytical model to predict flow
fields. We experimentally validate the model’s accuracy for single conduits and fractal vascular trees and demonstrate
how flow fields and shear stresses can be controlled to suit individual applications in cell biology.

Introduction

Flow is important in many biomedical applications, as
cell survival and behavior depend critically on it." It is also
essential in organ-on-a-chip devices®™* where cells are
perfused continuously to mimic in vivo conditions and
when studying the effects of transient shear stress on
cells.” Defining flow fields in these systems is thus
essential. The aqueous phase in conventional microfluidic
devices is typically surrounded by solid walls (made, for
example, of polydimethylsiloxane, PDMS), and flows
through them can usually be predicted.®”® For example,
equations based on pipe flow can be adapted for conduits
with arbitrary cross-sections’ and to model vascular cir-
cuits with branches of varying widths.'®™** As solid walls
restrict access, open microfluidics are being developed
where parts of walls are replaced by interfaces with air or
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immiscible liquids and equations describing rivulet

multiphase'® and droplet-based flows'® through conduits
with free surfaces have been described.

Recently, an open system termed fluid-walled micro-
fluidics was proved to be particularly suited to biomedical
applications. Circuits are built using just a cell culture
medium and Petri dishes that biologists use daily, in
addition to the bioinert cell-friendly and immiscible
fluorocarbon FC40; the two liquids sitting in virgin dishes
are reshaped into circuits in seconds.”*~** The medium in
these circuits is confined by FC40 walls held by interfacial
forces, and aqueous conduits have cross-sectional profiles
of segments of circles that morph as pressures change
during flow. Although predicting flows through such
morphing cross-sections is challenging, asymptotic
methods have been introduced and validated using
numerical simulations for transient (passively pumped)
systems.”> However, the development of simpler methods
and their experimental validation are still necessary. Here,
we characterize how fluid walls change during flow
through a simple open-ended conduit. Surprisingly,
we find that a common medium component—fetal bovine
serum (FBS)—induces elastic no-slip boundaries at the

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction
BY in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if

changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this license, visit http://creativecormmons.org/licenses/by/4.0/.


www.nature.com/micronano
http://orcid.org/0000-0001-8909-0847
http://orcid.org/0000-0001-8909-0847
http://orcid.org/0000-0001-8909-0847
http://orcid.org/0000-0001-8909-0847
http://orcid.org/0000-0001-8909-0847
http://orcid.org/0000-0002-6639-188X
http://orcid.org/0000-0002-6639-188X
http://orcid.org/0000-0002-6639-188X
http://orcid.org/0000-0002-6639-188X
http://orcid.org/0000-0002-6639-188X
http://creativecommons.org/licenses/by/4.0/
mailto:peter.cook@path.ox.ac.uk
mailto:edmond.walsh@eng.ox.ac.uk

Deroy et al. Microsystems & Nanoengineering (2021)7:93

medium:FC40 interface. We then develop a semi-
analytical model that results in a simple power law; it
enables the prediction of flow fields and shear stresses
throughout a conduit. Finally, we experimentally confirm
the accuracy of the model applied to single conduits and
complex vascular trees.

Results
Circuit fabrication and operation

Microfluidic circuits are fabricated using a microjet.*
A thin layer of cell-growth medium (i.e., DMEM) plus
10% fetal bovine serum (FBS) in a virgin Petri dish is
overlaid with FC40, and the tip of a needle held by a
3-way traverse (a ‘printer’) is lowered through the FC40
until it is located just above the medium (Fig. 1a). The
needle is filled with FC40 and connected to a syringe
pump; then, starting the pump jets FC40 through the
medium on to the bottom of the dish, and the submerged
jet sweeps some medium aside. As FC40 wets polystyrene
better than the medium, some fluorocarbons remain
stuck to the bottom. Moving the needle above the dish in
the desired 2D pattern creates a fluid FC40 wall on the
bottom of the dish. We begin with a simple open-ended
conduit (Fig. 1bi), where medium is infused through a
dispensing tube/needle inserted through the fluid ceiling
of the conduit (Fig. 1biii); it flows down the conduit and
out through the open end into the rest of the dish (the
sink; Fig. 1ci).

The challenge: predicting the flows when the fluid walls
morph

Unlike the solid walls in traditional microfluidic circuits,
which have fixed shapes, FC40 walls/ceilings morph
during flow above an unchanging footprint. The curvature
of confining FC40 walls is determined by interfacial forces
and hence can change during flow. As the Bond number is
low, the conduits have cross-sections like the segments of
circles; the walls are pinned to the surface of the dish
along the triple contact-line where the medium, FC40,
and polystyrene meet (Fig. 1c). Analogous to horizontal
pipe flow, there is a pressure gradient in the flow direction
along a conduit, and hence, the fluid walls morph in
response to this gradient. The Laplace pressure at any
axial position along the conduit is given by APonduit = %
(where y is the interfacial tension and R is the radius of
curvature). As AP is inversely proportional to R, a
decrease in P results in an increase in R, which translates
into a decrease in conduit height (defined as #4,,,, in
Fig. 1ciii). Thus, the conduit height falls from the input
end (high pressure) to the open end (low pressure; con-
trast the dark blue sections in Fig. 1cii and Fig. 1ciii). Our
challenge is to develop a semi-analytical solution that
enables the prediction of velocity and shear stress dis-
tributions throughout such conduits.
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Fig. 1 Workflow. a Building one straight fluid wall by jetting. (i) After
wetting a virgin dish with medium and overlaying immiscible FC40,
we lower a dispensing needle until it is just above the medium, where
it jets FC40 onto the bottom. As the needle moves laterally, the
submerged jet sweeps medium aside to leave an FC40 wall pinned to
the bottom. (i) 2D view of Section K-K. (iii) 3D side view of jet.

b Operation of a simple circuit—an open-ended conduit. (i) 2D and (ii)
3D views of the conduit. (iii) A syringe pump drives dye (added to aid
visualization) through the conduit; the dye front has just reached the
open end of the conduit and is emptying into the rest of the dish (the
sink). ¢ Conduit geometry. (i) Top view of the conduit without the
needle (position indicated). (i) Changes in the conduit cross-section at
L-L in c(i) during flow. Before flow is initiated, the conduit is bounded
by FC40 walls shaped like a spherical cap (light blue). During flow, the
walls morph due to the increase in pressure, and the conduit height
increases (dark blue). (iii) Changes at M-M. Before flow, the cross-
section is similar to that at L-L; during flow, h,,q increases more than
at L-L, as the pressure is higher. R = radius of curvature of the cap. b =
distance from the center of the cap to the dish surface. a = conduit
half-width.

Measuring the conduit height

As the conduit height reflects the local pressure, we first
develop a method to measure it. Medium containing red
fluorescent beads is perfused through a conduit sitting on
an inverted microscope (Fig. 2a); most beads travel stea-
dily through the conduit, but some remain stationary and
stuck to the conduit floor (the dish) or ceiling (the med-
ium:FC40 interface; Fig. 2b). In still photographs taken
with the focus on the floor or ceiling, the moving majority
appear as blurred streamlines due to the long exposure,
and the static minority appear as bright in-focus dots
(Fig. 2c). After the distance of a stationary bead stuck to
the ceiling from the conduit centerline (z) is measured,
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Fig. 2 Experimentally measuring conduit heights. a Overview. The
conduit is imaged under a microscope as medium + red fluorescent
beads flow through it. b Conduit cross-section. Most beads travel
down the conduit, but a few are stuck on the bottom or the ceiling.
hmax is calculated after z (the distance between a bead stuck on the
ceiling and the axial centerline in the crosshairs) and h, are measured
using the geometry of a segment of a circle. ¢ Images of beads after
focusing on the bottom (i) and (i) top of the conduit. Stuck and
stationary beads appear as dots, and moving beads appear as blurs
(‘'streamlines’) due to the long exposure.

the conduit height (/,,,,) is calculated using geometry
(Fig. 2b) and corrected for refractive effects (Supple-
mentary Information).

FBS creates a no-slip boundary at the medium:FC40
interfaces

As the conduit floor is solid, the no-slip boundary con-
dition applies there and results in zero velocity at the
medium:polystyrene interface; therefore, it is unsurprising
that beads on the bottom remain stationary (Fig. 2ci).
However, it is surprising that some are stationary at the
upper interface (Fig. 2cii); we might anticipate that they
would be in motion (the viscosity ratio of FC40:medium is
~4). Testing the medium with and without FBS shows that
adding serum induces no-slip conditions. As the con-
stitution of FBS is ill-defined and varies from batch to
batch, we replace it with the better-defined KnockOut
serum replacement (SR) and find that it has the same
effect. It was previously shown that cells attach and grow
at the interface between fluorocarbon fluids and tissue
culture medium.**** As with solid surfaces, cells interact
with a monolayer of denatured proteins that adsorb to the
interface.>**> This monolayer typically consists of serum
proteins (in which there is an abundance of albumin); this
allow cells to attach and thus presumably induces no-slip
conditions in these liquid-liquid interfaces. In our experi-
ments, the medium flows past static FC40, so we change
the conditions; FC40 is jetted through FC40 overlaying a
static drop containing beads. In the absence of FBS, FC40
flow induces rapid bead motion, as forces are transmitted
through the interface; with the addition of FBS to the drop,
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the beads immediately stop moving (Movie S1). We con-
clude that FBS and SR (two of the most widely used
additives in mammalian cell culture media) rapidly induce
the formation of a no-slip boundary. We now apply this
boundary condition to develop a theoretical model.

Semi-analytical model to describe fluid-walled conduits
Our initial aim is to model a straight conduit with
known flow rates provided by a syringe pump (Fig. 1c).
We first consider the standard solution for flow between
parallel plates derived from the momentum equation (the
Supplementary Information gives full derivations for this

and other equations). The resultant pressure gradient is
dP __ 8ttmax

dx = I,
the cross-section of fluid-walled conduits can be repre-
sented by the segment of a circle where height is

expressed locally as &1, = VR?* — 22 — b, the flow rate (Q)
becomes (Q = uA; u = velocity, A = cross-sectional area):

(¢ = viscosity, U, = maximum velocity). As

h ‘max 'ma:
f s dz =35

ax

j(\/RZ . b)sdz (1)

The integrand is rearranged and nondimensionalized
using # =Z and evaluated for the condition a >>
(defined as h’;‘“ < 0.2, Fig. S5), which—critically for the
following solution—yields an approximately constant
value for the integral, giving Q = 0.61 Umaxa Hmax. Sub-
stituting this into the pressure gradient for flow between
two parallel plates, we obtain lep 13. 04"Q For a > Npax

R= ﬁ, which combined with APC(,nduit = E yields the
semi-analytical expression for conduit height /.y (x) =
(&YQ’W + 18)** (o is the maximum height at the exit,

where x = 0). For a conduit height-to-width ratio % =
0.2 (within our operational range), the associated error is
~4%, which is a result of our simplification of the radius of
curvature of a conduit from a > hyay.

This solution enables the height at any position in a
conduit to be predicted if the boundary condition /4, is

known. Evaluating the magnitude of the bracketed term
26.08Quax
yhy

1cP, Q=25pL/h, y=0.04N/m, and /sy =20 pum (as an
order of magnitude reference), the effect of the boundary
condition on the height >1 mm away from the exit is
small. This provides a favorable corollary; height can be
predicted by the simplified power law:

, we find that for a conduit with ¢ =400 pm, y =

() (M)Oﬁ 2)

Hence, we do not require /4, to be known to predict the
conduit height for most experimental conditions of interest.
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Fig. 3 Effects of varying conditions on the maximum conduit height. Individual points: h,, measured as in Fig. 2 over the conduit length
(25 mm). Continuous lines: theoretical predictions based on Eq. 2 (in iv, using Q = 25 ul/h and w =953 um). (i) Varying flow rate (conduit width
~650 um). (i) Varying conduit width (flow rate 100 pL/h). (i) Varying medium flowing through the conduit (width ~650 um). Conduits are either
prepared using DMEM + 10% FBS and perfused with the same medium (circular points) or H,O (triangular points) or prepared and perfused using
DMEM + 20% SR (square points). The heights at each flow rate are almost identical to those of DMEM + 10% FBS. (iv) Height measurements of all
conduits collapsed onto a single reference plot according to Eq. S38 (color codes as in i and ii), demonstrating that Eq. 2 predicts the conduit heights
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The semi-analytical solution predicts experimentally
measured heights

We next measure the heights of conduits made with
DMEM + 10% FBS (from the exit to 25 mm upstream) using
the approach outlined in Fig. 2 and compare the results with
those predicted by Eq. 2 using y = 0.022 N/m (obtained from
pendant-drop tensiometry; see the Supplementary Informa-
tion) and p = 0.94 cP (at 25 °C;?%). In all cases, the predicted
results fit the experimental data well, for example, as the flow
and conduit width vary (6.25 pL/h < Q<100 pL/h in Fig. 3i
and ~750-1175 pum in Fig. 3ii). Good fits are also obtained
with conduits printed and perfused with medium plus 20%
SR and conduits printed with medium plus 10% FBS and
then perfused with water (Fig. 3iii); this suggests that com-
ponents in FBS and SR are deposited on the conduit walls
and ceilings during conduit construction and create long-
lived no-slip boundaries. Therefore, we examine the stability
of the boundary with and without continuous flow for 24 h
before measuring the heights (with flow). Although the
variance in the height over time is small between experi-
ments (Fig. S8), the dynamic nature of interfacial tension can
be expected to introduce a time-dependent variable

explaining the small differences measured. We also show
that the measured heights match the predictions through
mapping on a single reference plot (Fig. 3iv; Eq. S42). Finally,
we compare the predictions obtained from the semi-
analytical solution with those from a numerical model that
does not require the 4/a simplification implicit in our power
law; there is excellent agreement at scales relevant to this
study (Fig. S6; Supplementary Information).

Predicting the wall shear stress
h

The wall shear stress, 7.y is evaluated at y = + 5 with
8YUmax
Tmax = /4'3—; and g—; = g

‘max

We then use the relationship

Umax(0)

Fax
expressed in terms of /i, using Eq. 2, yielding:

Umax(z) =

h2 to infer Ta(z) = Tmax(0) ﬁ Timax is then

ax

“yQ hy
a3x Nmax

(3)

Tmax(z) = 1.28

Chokes reduce height variations down conduits
Controlling shear stress is essential for many cell studies;
this is easily achieved in solid-walled systems with fixed
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geometries."” In our conduits, the height increases from the
exit as one progresses further upstream, which translates
into corresponding variations in shear stress. In addition, %
progressively decreases as the distance from the exit
increases (from Eq. 2, /# o< %%, and so % o x~%7%), Con-
sequently, approximately uniform fields of wall shear stress
(%) are only found tens of centimeters from the exit, so
conduits with the relatively uniform fields required by
biologists cannot be built in a 6 cm dish. Therefore, we add
a short narrow conduit (a choke) to the exit of the conduit
so that the choke bears most of the pressure drop and
creates a field of nearly uniform shear throughout the
conduit (Fig. 4ai). Due to the choke, Xconduit ¢ (%)2,

then, the effective length (x.) introduced by the choke, at
which % = heonquie for a conduit without a choke, is xeg =

Aconduit ) 7

3
xChOke(achoke From  Eq. 3’(%)no choke X (é)ZOnduit’ o

dr 1 3 i dr
(%) choke ¢ (;———)*. Hence, the change in Z; from the

dr 2
addition of a choke is (e o (Zenduit)> Therefore, for
(%) choke Gchoke

conduits in Fig. 4b, the change in 7 over 1 cm upstream of
the choke is marginal (in order of increasing choke length,
the values are 0.85%, 0.20%, and 0.15%), and the wall shear
stress is effectively constant in the flow direction.

To illustrate the effect of a choke on the conduit height,
we print a conduit with 10 connected drops (Fig. 4aii).
During flow, the pressure in each drop matches the local
pressure in the conduit at the connection point; therefore,
each drop serves as an independent pressure sensor.
Without a choke, the drop height decreases in the
direction of flow as the pressure falls (Fig. 4aiii). With a
choke, all sensors have approximately similar heights
(Fig. 4aiv). The wall shear stresses calculated from Eq. 3
also show that choked conduits have more constant fields
along their lengths that are up to 2 orders of magnitude
smaller than those of choke-free conduits (Fig. 4d). The
predicted velocity and shear-stress fields across the
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conduit width are shown in the inset in Fig. 4d. Strikingly,
25% of the width experiences <5% variation in shear
stress (yellow region in the inset). Human umbilical vein
endothelial cells (HUVECs)—chosen because they are
known to respond to shear stress—grow as expected® in
such a choked conduit (Fig. S12).

Predicting flows in complex networks

This theory for single conduits can be extended to
networks where conduits split or merge (as in vascular
trees). We begin with a network in which input (parent)
and output (daughter) conduits have the same width. The
output flow (Q,) is determined by continuity, so for one
input (flow rate Q,) splitting into # outputs, Qy = % If
instead, m inputs (with the same Q,) merge into a single
output, then Q; = m x Q,. This process can be repeated to
determine flows emerging from each node in a complex

tree. The semi-analytical solution is then applied itera-
tively through each conduit starting from the exit.

We first study one conduit splitting into two daughters
(Fig. 5a), then the same structure with reversed flow
(Fig. 5b), and finally a bifurcating tree with four generations
of daughters (Fig. 5¢). All parents and daughters have the
same widths, but the flow area at the junction increases, so
the local pressure drop is small and assumed to be negli-
gible. The theoretical predictions fit well with the experi-
mental height measurements (Fig. 5). This theory may also
be extended to networks in which conduits have different
lengths and widths (Supplementary Information).

Discussion

Our challenge was to predict flow through a straight
fluid-walled conduit built using a cell culture medium on
a standard 6 cm Petri dish; during flow, the cross-section



Deroy et al. Microsystems & Nanoengineering (2021)7:93

of such a conduit inevitably morphs above an unchanging
footprint (i.e., it expands as flow increases and shrinks
with distance from the input; Fig. 1c). Our approach is
based on the recognition that the conduit height reflects
the local pressure. Therefore, we develop a method to
measure height (Fig. 2) and find that the addition of FBS
or SR to the medium creates a solid medium:FC40
interface that induces no-slip boundary conditions; this
defines the boundary conditions for our model (Fig. 2).
Therefore, it is likely that fluids rich in albumin (e.g., that
in the vasculature, lymph, cerebrospinal fluid, and vitr-
eous humor) yield the same no-slip conditions. We next
establish a simple power law with a fixed exponent (Eq. 2)
by approximating the conduit cross-section and applying
no-slip boundary conditions. This power law enables the
prediction of the conduit height, flow field, and shear
stress (Eq. 3) anywhere in a conduit; it requires no addi-
tional boundary conditions beyond the conduit footprint,
flow rate, viscosity of the medium, and interfacial tension.
This level of information is essentially similar to that
required with laminar flow through a solid-walled pipe,
except the pipe diameter now morphs in the flow direc-
tion to enable the pressure gradient induced by interfacial
tension to satisfy the momentum equation. This law also
agrees with numerical predictions for conduits satistying
hla < ~0.2, which is in the practical range. This enables
users to design conduits and to predict a priori flows and
shear stresses matching their specific requirements,
including those with essentially uniform shear-stress
profiles through the addition of chokes (in the absence
of chokes, such conduits would be too long to fit in a 6 cm
dish). We also experimentally demonstrate the interplay
between the conduit height and pressure by printing 10
drops connected at different points down a conduit; then,
during flow, each drop serves as an independent pressure
sensor (as the height reflects the local pressure; Fig. 4a).
We also experimentally verify the accuracy of the model
by varying flows through conduits with a range of widths
(Fig. 3), splitting and merging conduits (Fig. 5a, b) and
using a fractal vascular tree (Fig. 5¢). As this form of open
microfluidics offers multiple advantages over traditional
closed systems®~** we anticipate that this model will
increase the uptake of these circuits in domains benefiting
from flow (e.g., when generating chemotactic gradients
using laminar streams) and well-defined shear stress (e.g.,
when studying thromboses in vascular trees).

Materials and methods
Fluid-walled microfluidic circuit fabrication

All circuits were fabricated using a custom-made pro-
grammable printer (iotaSciences Ltd, Oxford, UK). The
printer is fitted with a syringe pump that drives a 1 mL
glass syringe (Hamilton, Reno, Nevada, USA). The syringe
is filled with the immiscible and bioinert fluorocarbon
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FC40 (FC40STAR®, iotaSciences Ltd, Oxford, UK) and
connected via polytetrafluoroethylene (PTFE) tubing
(26 G, Adhesive Dispensing Ltd, Milton Keynes, UK) to a
laser-cut jetting needle (25G, 70 um inner diameter,
Oxford Lasers, Didcot, UK) held by the printer’s 3-axis
traverse system.

Circuits were made on 60 mm tissue culture-treated
dishes (Corning, 430166). First, 1 mL of cell culture
medium is pipetted on the dish and swirled until it covers
the entire bottom of the dish. The medium is either
DMEM (Merck) + 10% FBS (Merck) or DMEM + 20% SR
(Thermo Fisher). The dish is then tilted so that the excess
medium drains to the side, and most of the medium
removed by pipetting, leaving a thin residual film (~30 pm
thick) on the bottom. This film is overlaid with 2 mL FC40
(Fig. 1a), the dish is placed on the stage of the printer, and
the jetting needle is lowered until the tip is 0.5 mm above
the bottom of the dish. FC40 is now jetted (8 uL/s) as the
needle moves laterally above the surface of the dish. As
the submerged FC40 jet contacts the dish’s surface, it
pushes the medium aside to leave fluid walls of FC40
pinned to the dish by interfacial forces. These walls then
shape the conduit.

Perfusing fluid-walled conduits

A 250 uL glass syringe (Hamilton) filled with medium
and placed in a syringe pump (PhD Ultra, Harvard Appa-
ratus) is connected via PTFE tubing to a 25 G stainless-
steel hollow needle (Adhesive Dispensing Ltd). The needle
is lowered through the ceiling into the conduit ~30 mm
from the exit until it is ~100 um above the bottom of the
dish, and the dish is placed on the stage of an inverted
microscope. The syringe pump is then started, and conduit
heights are measured once the pressures in the conduits
reach equilibrium, after ~30 min. The open-ended straight
conduits are 25 mm long unless stated otherwise.

Measuring the conduit height

The conduits in Figs. 3 and 4 were imaged on a Zeiss
Axio Observer inverted microscope with a 10X Plan
Apochromat Air objective (NA = 0.3), and those in Fig. 5
and S8 were imaged on an Olympus IX53 inverted
microscope with a 40X objective (NA = 0.55). The con-
duit heights are measured as the conduits are perfused
with medium plus red fluorescent beads (1:1000 mixture;
0.5 um diameter; FluoSpheres, F8812, Thermo Fisher).
After equilibration for ~30min after the beginning of
perfusion, some beads remain stationary on the surface of
the dish or the medium:FC40 interface and are used for
height measurements (Fig. 2). To validate the theoretical
model, we experimentally measure /., and correct the
heights for the apparent depth due to refraction (Eq. S40).

The Zeiss microscope has a motorized stage and a
digital controller that can record coordinates to within
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tens of nm. It displays real-time images on a monitor, with
cross-hairs indicating the exact position (Fig. 2c). Starting
from the conduit exit, this digital controller is used to
position the objective close to the center of the conduit,
and a static bead on the medium:FC40 ceiling is brought
into focus. The coordinates are recorded, and the stage is
lowered to focus on a static bead on the dish surface
(there are typically many). The coordinates are again
recorded. The stage is then moved laterally to record the
edge coordinates of the conduit. The offset z between the
bead on the ceiling and the center of the conduit and
the corresponding height at this point, /,, are now cal-
culated. /1,y is then inferred using trigonometry, and the
measurements are repeated along the length of the con-
duit. In the first 5 mm (where the conduit height increases
most rapidly), measurements are taken every 0.5 mm, and
in the remaining 20 mm steps, the measurement interval
is increased to 1 mm. The stage of the Olympus micro-
scope lacks digital control and is less precise, and the
approximate location of the center of the conduit is
determined using the circular nature of the fluid interface;
moving the objective upwards scans through beads stuck
on the interface, getting closer to the top of the conduit as
the objective is raised. The top is identified when only one
or a few beads remain in focus (typically in an axial strip),
and this position is recorded using the scale on the
objective knob of the microscope (ticks spaced in 1 pum
increments). The position on the surface of the dish
directly below this bead is also recorded, and the differ-
ence is M. This process is then repeated along the entire
conduit as before. Pictures of the conduit are then taken
with a 4X objective to obtain its average width.

Due to mismatches between the refractive indices of the
culture medium and air, height differences measured on
microscopes using the focal position of beads do not reflect
the axial movement of the microscope objective; rather, the
height differences appear smaller.”® Height corrections are
dependent on the objective numerical aperture and
refractive indices, which for our experiments are found to
be Af=a x As, where Af is the actual conduit height, As is
the measured height, and « is a constant (o = 1.36 for Zeiss
measurements; @ = 1.45 for Olympus measurements).
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Supplementary Information Text

Semi-analytical solution for fluid-walled conduits
The solution to flow through fluid-walled conduits is derived from the simplified Navier-
Stokes equation:

( ou N au) _ P N 0%u N 0%u s1)
P\ 5x ”ay ~ T ax " Hlox2 dy?
Flow is laminar (the Reynolds number of our conduits never exceeds 0.1; Table S1),
2
unidirectional (v = 0), and fully-developed (3—1;=37121= 0). The simplified equation
becomes:
oP 0%u

From Fig. 1C, we determine these geometrical relationships:

a? + b? = R?
R =0+ hypgy
_ a’ + hrznax b= a® — hrznax
2hmax 2hmax

Conduit height, h,, at any location across the half width (Fig. 2B) is:

h,=VRZ—z2—b (53)

At the center of the conduit (z = 0), height is maximal and corresponds to h,4,; at
pinning lines (z = +a), it is 0. The width and length of the conduit are set by the user
and do not change over time. However, h,,,, depends on the pressure which changes
during flow as fluid walls morph; it increases with increasing pressure, and decreases in
the direction of flow. From the provided boundary conditions, the dimensionless
velocity profile is assumed to be the same as that used in the classical solution of
Poiseuille flow between parallel plates, and — as media:FC40 interfaces act as solid
boundaries — we assume the no-slip boundary condition applies:

h d
M. u=0 and @y=0;£=0

@y =+

Integrating Eq. S2 twice yields:

du 1dP
dy pdx

1 dP
y+ec, u@)=-——y2

2‘[,[ dx + 1y + Cy



Applying boundary conditions, we find:

1dpP

c1=0; ¢ = _@Ehmax
And so u(y) can be expressed as:

1 dpP h?
- 2 _ ‘max
u(y) 2 dx (y 2 >

Since u(Y) = Upax @ y = 0, the flow’s maximum velocity becomes:

h,znax dP
Umax = — 81 dx
4y? AP Upgy
=|1-— , —
u(y) ( h?nax> umax dx h‘,?nax

(54)

(85)

. . . . . d . .
Across the conduit’s width (in the z-direction), i = constant; hence, the relationship

between the maximum flow velocity across a width, Upqyx (), to the maximum conduit

velocity, Uy (o), IS:

umax(O) _ umax(z)

hanax B h;
Umax(0)
umax(z) = hrzn wx h;

The total flow rate through the conduit is found by integrating the velocity profile:

hy
a 2

0= | [ utdyas

—a _&
2

Evaluating the first integral provides flow rate per unit length as:

hy
2
, h; dpP 2
Q' = }[ u(y)dy = — 12”% = §umax(z)hz
7Z

(56)
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Substituting for u, in Eq. S7 as in Eq. S6 yields:

2umax(O) fh?’d

3 hrznax

And since from geometry h, = VR? — z? —

a

4‘umax(o) f 3

—-b) d S8

L ) @ (58)
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The integrand is then normalized using n = gand evaluated over

max

4 (VR? —n%a? - b)
Q= ghmaxumax(o)af w3 (59)
max
— 0.50-
c
v
S .
uq: 0.49- =
L8] =
O x
o %
L 048 &
o
3
S 0474
-
o
.r__U 0-46— 000 O O SO S O O @& @ [ ] L] L] L]
g
2 045 r T T 1
0 25 50

a/h

Fig. S1. Normalized volumetric flow rate coefficients for a range of conduit half width-to-height
ratios. The integrand in Eq. S9 is evaluated for 0 < a/h < 50. Ratios less than 5 (red crosses, a~h)
are ignored. Ratios greater than 5 (blue dots, a > h) correspond to conduit geometries typically
observed in this study. The average normalized flow rate coefficient in this region corresponds to 0.46.

For heights typically observed here (a > h,,4,; Fig S1), flow rate is:



4
Q= §hmaxumax(0)a(0'46)

Q
LU = (510)
max(0) = 0.61h,,.a
Now substituting the relationship for w4 (o) into Eq. S5 yields:
dP  13.11Qu
Pnax 7= = ———— (511)

2 hZ
The radius of curvature of the conduit is defined as R = M, however when a >

max

hax the radius of curvature can be simplified as:

a?® h? a?
R= (1 + "‘“") ~ o (512)

Since change in hydrostatic pressure is assumed to be negligible along the conduit, the
local pressure at any x-location can be characterized by the local Laplace pressure in
accordance with the simplified Young-Laplace equation for interfaces represented as the
arc of a circle (APqpnguit = %). Using the simplified cross-sectional radii of curvature
expressed in Eq. S12 produces the following equation defining pressure increase across
the interface:

y 2h
APinterface =5~ Y( max)

R a?
dP 2ydh
N T I S13
dx a?dx (513)
Substituting Eq. S13 into Eq. S11:
2y 13.11Qu
;h?naxdh = de (514)
6.55Qua
o R34 dh = %dx (S15)
Integrating Eq. S15 then gives:
26.08Quax
Phax = # ta (516)



Since at the exit, Ry = hg, then ¢; = hg. Hence the semi-analytical solution for
predicting conduit center-heights becomes:

26.08Quax 0.25
hmax (x) = <—

+ hg) (517)

Reintroducing P = y (Zhﬂ) into Eq. S17 solves for pressure as:

a2

(518)

X

417.28Quy3x  \**°
= ——""=+F;
a

Importance of conduit exit-height
Eq. S17 requires an experimental measurement, conduit exit-height, h,, to predict the
height elsewhere in the conduit. However, consider the relative magnitude of the terms:

26.08Quax
14

) 0

26.08Quax

14
given fluids, flow rate, and conduit width, the location along the conduit at which these
two terms become equivalent is:

> hg, exit height has a negligible effect on conduit height upstream. For

hgy

~ 26.08Qua (519)

X

For average flow rates and conduit widths used here (Q = 25 uL/h,a = 0.5 mm), x = 92
um. At a conservative distance from the exit (i.e., an order of magnitude greater than x;
1 mm) height predictions converge across a range of exit heights (Fig. S2). Hence, a
simplified semi-analytical solution requiring no experimental measurements can predict
conduit height accurately away from the exit:

26.08Quax\’?°
i) (520)

nas() = (=
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Fig. S2. The effect of exit height on conduit height is negligible. Conduit height (h,,,) is calculated
using Eq. S17 assuming exit heights (hq) of 530 um (Q = 25 pL/h, a = 0.5 mm). Inset: results for
the first 0.6 mm. For low exit heights (5 < hy < 20 ), conduit heights differ markedly only in the first
~0.1 mm before converging; for larger exit heights (h, = 25 or 30 pm) convergence occurs later.

Numerical solution
The semi-analytical solution provides a simple powerful method to determine flows.
However, it relies on geometrical assumptions (i.e., when deriving the normalized

2
volumetric flow rate constant of Eq. S10, and R = Z—h). Therefore, we derived a numerical

solution without these simplifications using the forward Euler method. Pressure along a
conduit is solved iteratively in steps of Ax as:

P(x + Ax) — P(x)

P = Ax
& P(x + Ax) = P(x) + AxP'(x) (521)
From Eqg. S8, volumetric flow rate is defined as:
a
0 = FUmax () (VRZ =22 - b)3 dz (522)

3

The integrand in Eq. S22 is a positive constant dependent only on local cross-section,
represented by f3:

_ 4 Uy (X)

= §mﬁ(x) (523)

Q

Rearranging for t,qy:



3 ()

Umax (X) = 4wQ (524)
Given the initial value problem P'(x) = % (Eg. S5), P'(0) = 8/:1;210' and P(0) = % =
;VT’:’%, Eq. S21 becomes:
P(Ax) = P(0) + AxP'(0) (525)
P(Ax) = af}:rh‘;l% 8’;:;0 (526)
From Eq. S24, u, = L Q, hence:
4 p(0)
P(Ax) = af’;h‘;lg ;’(1 (% Ax (527)
Rearranging the Young-Laplace equation yields the radius of curvature at Ax:
R(Ax) = —— (528)
P(Ax)

This iteration is repeated for n steps (n = {1, ..., L/Ax — 1}) along any conduit of length
L, and is valid for as long as the half-width is greater than or equal to the local maximum
height (a > h,,4y). If this height exceeds the half-width, the numerical solution fails (i.e.,
the conduit has a contact angle > 90°). It follows that:

14

R(n+1) :m (529)
P(n+1)=P(n)+ ;’(‘f) Ax (530)
P(n+1) = VMm@ 61Q (531)

a? + hiax(m) ~ B(M)

Across geometries where a > h,, ., there is good agreement between semi-analytical
and numerical solutions (see later in Fig. S5).

Pendant-drop tensiometry

To determine the interfacial tension (IFT) between the various media used in this study
and FC40, we used the First Ten Angstrom 1000B Manual Drop Shape Analyzer (Model B
23A 110) plus a Point Grey Firefly MV USB camera to record drops of FC40 formed in a

8



cuvette of medium and infer the IFT through image analysis. To do so, a 34G needle
(Adhesive Dispensing Ltd) is connected to a 50 uL glass syringe (Hamilton) via PTFE tubing.
The syringe is filled with FC40 and loaded onto a syringe pump (Harvard Apparatus). The
needle is then lowered inside a cuvette filled with medium. A drop of FC40 is then set by
infusing a desired volume through the needle. A picture of the formed drop is taken, and
the software determines the IFT. Drops were imaged for 5 h, and the IFT obtained by
averaging values recorded 2.5 — 5 h after starting imaging, and then averaged again over
the number of repeats (3 for each medium; Fig. S3). The values obtained are ypgs =
22.8 + 0.44 mN/m (DMEM + 10% FBS), ysg = 22.2 + 0.99 mN/m (DMEM + 20% SR), and
Ybeads = 20.7 £ 0.58 mN/m (DMEM + 10% FBS + beads). The system was also calibrated
with water (a drop of water in a cuvette of FC40), yielding yy,o = 51.8 £ 0.74 mN/m,
which agrees with values accepted in the literature.

40
E
=
£
5 G4nBeaBRABRRRARARARARARAARARA
EJ 204
T
g
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0 T T T 1
0 2.5 5

time (h)

Fig. S3. Interfacial tension measurements between FC40 and DMEM + 10% FBS. Drops of FC40 were
submerged in DMEM + 10% FBS, and the IFT measured over 5 h. Results of three repeats are shown,
with each symbol corresponding to a repeat. In each repeat, IFT falls in the first 30 min to a plateau;
the average value (ypgs) collected between 2.5 -5 h was 22.8 £ 0.44 mN/m.

Reynolds number in fluid-walled conduits
Flow through conduits can be characterized by the Reynolds number, Re:

— PUayg dh
u

Re (532)

where dj, is the hydraulic diameter (often used as the characteristic length for flow
through non-circular ducts or pipes in lieu of the traditional circular diameter). A duct’s
hydraulic diameter is:



where A is cross sectional area and P is wetted perimeter. For fluidic conduits in this
study, the hydraulic diameter is:

2 (R2 sin™! (%) - ab)
Rsin™1 (%) +a

dh=

Table S1 gives Reynolds numbers calculated with Eqg. S32 using experimental data from
Fig. 3i.

Table S1. Reynolds number in fluid-walled conduits

flow rate distance from conduit exit A d, Ugpg Re
[uL/h] [mm] [mm?] [um] [mm/s]
6.25 0 0.0079 23.990 0.2216 0.0056
125 0 0.0100 30.647 0.3457 0.0112
25 0 0.0109 33.307 0.6360 0.0225
50 0 0.0127 38.626 1.0976 0.0450
100 0 0.0153 46.596 1.8162 0.0898

Conduit capillary length

Throughout this study, it is assumed that gravity has a negligible effect on conduit
geometry as interfacial forces dominate at the microscale. The Bond number (Bo), a
dimensionless quantity representing the ratio of gravitational to interfacial forces acting
on a fluidic system, gives the relative importance of these forces:

Apgl?
0=

y (533)

Here, Ap denotes the difference in density between medium in the conduit and the
overlaying FC40, and L some characteristic length. A system’s capillary length L.
corresponds to the characteristic length at which Bo = 1 indicating that gravitational
forces begin to dominate. For conduits in this study, L. = 1.6 mm. Therefore, to neglect
gravity, the characteristic length must be much less than the capillary length (i.e., L «
L.). This can be determined by investigating the Bond number, which can be written as
the ratio of hydrostatic to Laplace pressures:

Apgh
Bo = M (534)

R
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2

Using the assumption that a > h,,,,, the radius of curvature is simplified as R =

max

yielding:

_ Apga®
14

Bo (535)

Comparing this to Eq. S33, it is easy to see the characteristic length is L = a. As the largest
half-width in this study is a~0.6 mm (Fig. 3ii; 2.5 times smaller than L), this corresponds
to Bo~0.1, showing that interfacial forces dominate and that gravity forces are negligible.

Semi-analytical solution for perfect slip at the media:FC40 interface
The semi-analytical solution is derived with the assumption of no-slip at the media:FC40

interface. This is analogous to assuming that the ratio of the viscosities of FC40 and

KUFCa0

medium is infinite such that lim = 0. To predict flow fields in conduits with

UFCc40—® Hmedia
any possible ratio of dynamic viscosities, we consider the other extreme in which perfect
slip exists, in absence of any Marangoni effect, between immiscible fluids such that
lim £ — o,
UFCc40—0 Umedia
The steps to derive the semi-analytical solution in such conditions mirror those outlined

for the no-slip condition, and vary only by the boundary conditions applied. These are:

hmax

2

hax du
> ,@—O and @y = —

@y =

su=0

Applying these conditions to the Navier-Stokes Eq. S2 yields:

6.5Quax 0-25

Ry (X) = ( + hg) (536)

Slip and no-slip solutions are compared in Fig. S4.
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Fig. S4. Perfect slip versus no-slip semi-analytical solutions. Solutions are computed using Eq. S20
(no-slip) and Eq. S36 (slip; exit height assumed negligible) for a conduit (width 654 um) perfused at
25 uL/h. Experimental data (reproduced from Fig. 3i) fit the no-slip condition.

Conduit failure
Conduits can withstand up to a maximum flow rate (Q,,4,) before reaching capillary
instability which occurs when the contact angle exceeds 90° (defined as 8 =

=1 Zahmax
Sin (a2+h,2nax
hmax), producing a perfect half-circular cross-section (Fig. S5).

)). This instability occurs when half-width equals maximum height (a =

Pressure
~—  Simplified conduit geometry
— Actual conduit geometry
2Pmauc i
Pmax B R — -

|
|
I

T R
iy, M0 .

’"“"<1 9=90; =1 6>90; ":{“"

6 < 90;

Fig. S5. Comparing pressures calculated using the simplified (green line) and exact numerical

hmax

solutions (blue curve). For conduits with < 0.2, the percent error between solutions is < 4%,

a
and —as a > hy,4, — flow can be modelled as Poiseuille flow between two infinite parallel plates. As

12



% increases, this simplification becomes invalid and the two solutions deviate. The maximum

hma

pressure is reached when TX = 1, thereafter, pressure decreases as % increases above unity.
Flow through conduits relies on a negative pressure gradient in the direction of flow. The
maximum pressure a conduit can withstand occurs when the contact angle reaches 8 =
90°; beyond this point, flow further upstream begins to pool creating a bulging conduit
where 8 > 90°. This then leads to pinning-line failure (and the fluid wall breaks). The
maximum flow rates achievable in conduits will depend on circuit geometry (i.e., conduit
length and width) and fluids used. Conduit failure will occur at the point of highest
pressure in a straight conduit, and this will always be the inlet to the conduit. From the
exact numerical model (blue curve in Fig. S5), we see that the maximum pressure is
reached when h,,,, = a, and that this value can be extrapolated onto the simplified
semi-analytical solution (Eq. S20, green curve in Fig. S5) when h,,,, = 0.5a. This h/a ratio
is the limit at which the maximum flow rate is determined using the semi-analytical
solution:

14
=——  p4

Omax 26.08uax ™Y

3

. __ra

* Qmax = 417.28ux (537)

Fig. S5 highlights % ratios where the simplified semi-analytical solution can be reliably

. h . . . .
used, which corresponds to % < 0.2, at which point there is < 4% error between semi-
analytical and numerical solutions.

Collapsing numerical and semi-analytical solutions

There is good agreement between numerical and semi-analytical predictions of conduit
properties for geometries investigated here. These theoretical projections can be
collapsed onto a reference curve hy, 4, rer by raising Q, a and u to the 0.25 power and y
to the -0.25 power (see Equation S20) such as:

0.25

0.25 0.25 0.25 e
=) @) @) G5 e
hmax,ref Qref aref .uref yref

This equation accurately predicts the height profile of a conduit for any given volumetric
flow rate, width, dynamic viscosity, and interfacial tension.

As our model is simplified by certain assumptions, we looked at their effect on predictions
by comparing the semi-analytical model with the numerical model of the conduit (Fig. S6).
Both models agree well with each other for conduit lengths of up to 100 mm, after which
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they diverge, differing by 6.5% at 300 mm. However, our conduits are typically £ 25 mm
as they are printed on 6 cm dishes, so divergence is tiny.

0.22-
==+ numerical -
—— analytical

0.11-

height (mm)

0 150 300
distance from conduit exit (mm)

Fig. S6. Divergence of numerical and semi-analytical solutions. Heights were calculated using the
iterative approach detailed in Eq. S21-31 (numerical solution), or Eq. S20 (semi-analytical solution),
for a conduit with width 1 mm and flow rate 25 pL/h. Models diverge as conduit length increases,
with a difference of 6.5% in conduit height 300 mm from the exit. For conduit lengths <25 mm
relevant here (inset), the two models yield essentially similar results.

Error analysis for conduit-height predictions

To determine whether height measurements agree with theoretical predictions within an
acceptable margin of error, the Root Sum of the Squares (RSS) error propagation method
was used to calculate associated measurement uncertainty:

oh 2 9h 2 0h 2 dh 2 0h
e = |(T5200) +(TnZon) +(TFaZen) +(TaZen) +(T5Z)

Using u-substitution, the partial derivatives above (also known as sensitivity factors) are
computed as follows:

2

Ohmax 26.08uax
0Q  (26.08Quax\’7°
4y( VQ# )
Ohmax 26.08Qax
ou  126.080uax\*""
4y( VQ# )
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Ohmax 26.08Qux

da 4y (26.0?/Quax)°'75
Ohmax 26.08Qua
- 0.75
0x 4y (26.0?/Quax)
0hax _ 26.08Quax
oy 4y? (26.0?/Quax)0'75

Next, the uncertainty of each individual variable (o) is determined:

gy is the transducer uncertainty of the Harvard PhD Ultra syringe pump and from
the user manual the pump’s flow rate accuracy is 0.25% (g, = 0.0025Q uL/h).
g, is the standard deviation of dynamic viscosities taken from 10 separate
solutions of DMEM + 10% FBS measured with a Hydramotion Viscolite 700
portable viscometer (g, = 0.05 mPa.s).

0, is the standard deviation of conduit half-width along its 25 mm length (i.e., the
error associated with jetting). For measurements performed on the Zeiss Axio
Observer microscope, widths were measured at 35 distinct locations (g, = 8 um).
o, is determined by the microscope’s specifications; for the Zeiss Axio Observer
microscope, the accuracy of the stage in the x, y-plane corresponds to +1 pm
(0, =1 pm).

g, is unknown as interfacial tension is determined by fitting the semi-analytical
solution to experimental data, and thus error in interfacial tension is not included.

Finally, error due to experimental uncertainty from the measurement of conduit height
using beads (&p044) Must also be included. This uncertainty takes into account the
acquisition error (0peqq) and twice bead diameter (2dp0q4):

— 2 2
€pead = \/Ubead + 2dbead

To measure acquisition error, the distance between a single pair of beads (one on the
surface of the dish and one on the media:FC40 interface) was measured 15 times and a
standard deviation was calculated such that gp.54 = 0.9 pm. Unlike the calculated
expanded sensitivity €.4;. Which depends on location (i.e., the expected error increases
as distance from the exit increases), €p.44 is @ fixed quantity applied along the entire
conduit such that the total propagated error is:

— 2 2
Etotal = A ’ gcalc + Ebead
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Values for &;,t4; associated with height predictions are given in Fig. S7.

0.14- ..

— -

0.07

e

— - - =

height (mm)

e experimental data
—— analytical solution
-=-- RSSerror
0 T T T 1

0 12.5 25
distance from conduit exit (mm)

Fig. S7. Error (root sum of squares, RSS) propagation for semi-analytical predictions of conduit
heights. Height predictions were calculated for conduits illustrated in Figure 3i (using Eq. S20) and
errors (£¢otqr ) determined (dashed lines bordering each coloured line — colour coding as in Fig. 3i).

Varying flow regimes
We studied the effect of flow regime on conduit height. First, we left a conduit at rest (no

flow) for 24 h and took measurements the next day after starting flow. We then perfused
a conduit overnight (for 24 h) and measured heights the following day. Comparing results
with those obtained with freshly-printed conduits (Fig. 3i), although the variance of height
over time is small between experiments (Fig. S8), the dynamic nature of interfacial tension
could be expected to introduce a time-dependent variable to explain the small differences

measured.

0.13-

lﬂ': 0'0'.
0.065— ]
&

O t=0 & t=24h static
— theoretical O t=24h dynamic
0 T T T 1
0 12.5 25
distance from conduit exit (mm)

Eﬂgﬂgoo

® 6.25 uL/h

height (mm)

Fig. S8. Properties of fluid walls remain stable across different flow regimes. Heights in conduits
experiencing different regimes were measured and compared with theoretical predictions (using Eq.
2). A conduit (width ~650 um) was printed, left for 24 h without flow, then perfused at 12.5 pL/h,
and heights measured (‘t = 24 h static’). Another conduit was printed and infused for 24 h at 12.5
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uL/h before measuring heights (‘t = 24h dynamic’). Heights were also measured after decreasing flow
to 6.25 pL/h, and then increasing it to 50 pL/h. Comparing these data with those in Fig. 3i (‘t = 0’) we
find the different regimes had little effect on height.

Splitting conduits

In Fig. 5, we looked at the effect of one parent conduit splitting into two identical daughter
conduits, and determined from continuity that flow through daughters is half the initial
flow through the parent. This holds true generally for parents that split into n daughters

so long as the geometry of daughters is identical. Then, Q; = %.

However, it is more difficult to predict flows through daughters of differing geometries.
Consider Fig. S9 where some branches have different half widths a or length x.

Fig. S9. Single parent conduit splitting into multiple daughter conduits. Each daughter conduit has a
different length x or width w (half-width a = %), and therefore the resultant flow rate Q through
each conduit will be different and determined by Eqg. S39.

As the pressure Py, at the branch point must be the same for each branch, and since
conduits are open ended (such that P, = 0), then P;, — P, = AP must be the same
across each branch. From our scale analysis of the effect of exit height (h,) on conduit
shape, we know h can be ignored if conduits are > 1 mm in length such that:
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X

417.28y3u0x\ >
a7

Assuming each branching conduit is > 1 mm, the pressure drop in each must be the
same, and we can equate the pressure gradient in any branch n to reference branch 1
as b, = P;:

(417.4)/3;1ann)0'25 _ <417.4V3/JQ1x1)0'25

a,’ a,’

a,’ a,’
7
0, = Q1a, %,
n 7
A" Xn

Applying mass conservation, we know the input flow rate Q must equal the sum of all
flow through branches (from 1 to n):

We can remove Q1 , X1, and a, from the summation term as these are used as reference
values for all other channels and are fixed:

n

n 7 7
Q_nQ1x1§ :an _Q1x1§ :an
- 7 - 7
na X a X
17 & Xn 17 & X

This gives:

h=—" (539)

Since the reference conduit can be any of the daughter conduits, we can apply this
equation to calculate flow fields through any conduit knowing only input flow rate Q
and the geometrical properties of each conduit.

Height correction for apparent depth in microscope measurements

To determine conduit height using an inverted microscope, we first focus on a
fluorescent bead at the media-FC40 interface. The height is then taken as the distance
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As by which the stage moves to focus on a bead on the surface of the dish. However,
due to mismatches between the refractive indices of the medium containing the bead
(water), and the medium surrounding the microscope objective (air), the focal position
of the bead does not follow the axial movement of the stage. Rather, As appears
smaller than reality.

To correct for this focal shift, consider Fig. S10 where the microscope stage is moved a
distance As, and the resulting focal position is where the two red dashed lines converge,
slightly below the original position of the bead. This derivation is based on a similar one
presented in [1] but adds the extra layer of the polystyrene dish in the light path.

FC40

bead—-\

dish (n2) 2x | As
[, 2(x+6x)

g 2(x+x')

Zy

air (n3) 2(x+x"+8x')
2(x+6x+6x")

objective

Fig. S10. Correcting focal shift when measuring conduit height on inverted microscopes. A drop of
medium (which contains fluorescent beads and is overlaid with FC40) sits on a polystyrene dish on the
stage of an inverted microscope. One red fluorescent bead stuck to the medium:FC40 interface at the
peak of the spherical cap is brought into focus. Moving the stage a distance As closer to the objective
moves the focus below the bead by a distance Af # As due to refraction of the light path across the
different substrates. Using a combination of Snell’s law and geometry, the correct value of Af is
determined using the numerical aperture of the objective lens, the refractive index of the culture
medium around the bead, and the refractive index of the air at the objective, as in Eq. S40.

The marginal rays of the light cone emerging from the bead hit the dish at angle 61, and
have a half-width of x. Rays then travel through the dish at angle 82 and emerge from
the dish into air at angle 83 with a new half-width of x + x’, before entering the
objective. As the microscope stage is moved, we can see that the angles of the rays stay
the same, while half-widths of light cones vary.

If the original depth of focus is Z, and moving the microscope stage results in a new
depth of focus Z’, then the axial focal shift is given by Z' — Z.

In Fig. S10, we have the relationships:
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Z=Zl+22
Z'=z+z,

Using trigonometry, we determine the following relations:

can (@) = x _ X

o) = zZ; A= tan(6,)
x' x'

tan(0,) = P Z, = —

, (9)_x+5x_ , _ x+6x

o) = z; A= tan(6,)
5xll . 5xll

tan(0,) = P z, = tan(d;)

!

Ox
tan(03) = s = ox' = As X tan(63)

As the thickness z2 of the dish does not change, then:

!

! x ax,, ! 6 rn
Zy = 75 > = - x' = 6x
z 2 " tan(0,) tan(8,)

Furthermore, we can see from the half-width of the light cone emerging from the dish
after the stage has moved that:

x+x" +8x"=x+6x + 6x"
S>x+x' +6x' =x+6x+x
s~ 0x' = 6x = As X tan(63)
The focal shift is therefore:

Af=2'"-Z=21+2z,—2,— 2,

Af = o _ x + 0x X

f=2n Zl_tan(Hl) tan(6,)
Af = ox
f_tan(Hl)
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tan(63)
tan(6,)

S Af = AS

This can now be expressed in terms of the numerical aperture of the objective, NA:

NA
NA =nl X sin(0,) © 0; = sin™! (H)

Therefore:
tan (sin™?! (%)

tan (sin~1 (IX—f)

Af = As (540)

For small NA, we use the small-angle approximation:

sin(@) = 6,tan(0) = 6

and:
Af = As — (Ir\ﬁl) = Asn3

To confirm the accuracy of Eq. S40 for height corrections, we measured the heights of
sessile drops of known volumes with the Olympus microscope. Droplets of 0.5 and 1 uL
were deposited on polystyrene culture dishes, made from the same media + bead mixture
used to measure conduit heights. As before, the diameter and heights of drops were
measured, theoretical heights determined using the known volume and measured
footprint. The heights measured using beads were then corrected using Eg. S40 and show
good agreement with theory (using the height-to-volume equation for sessile drops [2];
average of 2% difference between theoretical and corrected heights across 21 individual
measurements; Table S2).
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Table S2. Comparison between sessile-drop height measurements and theoretical predictions using

Eq. S40
drop footprint measured theoretical corrected ratio corrected vs
volume (pL) | diameter (mm) height (mm) height (mm) height (mm) theoretical
1.666 0.294 0.422 0.427 1.012
1.670 0.278 0.421 0.404 0.960
1.663 0.270 0.424 0.392 0.926
1.667 0.287 0.422 0.417 0.989
0.5 1.678 0.295 0.418 0.429 1.026
1.685 0.290 0.415 0.421 1.016
1.680 0.262 0.417 0.381 0.913
1.687 0.252 0.414 0.366 0.884
1.696 0.273 0.411 0.397 0.966
2.058 0.368 0.549 0.535 0.974
2.078 0.377 0.541 0.548 1.013
2.101 0.370 0.532 0.538 1.012
2.136 0.376 0.518 0.546 1.056
2.134 0.345 0.518 0.501 0.967
1 2.136 0.334 0.518 0.485 0.938
2.165 0.315 0.506 0.458 0.904
2.157 0.350 0.509 0.509 0.999
2.167 0.338 0.506 0.491 0.972
2.113 0.363 0.527 0.528 1.001
2.126 0.350 0.521 0.509 0.975
2.138 0.370 0.517 0.538 1.040

Maintaining constant shear along fluid-walled conduits
For conduits with chokes, the profile of both choke and conduit are determined using Eq.
2. While the exit height of the choke can be assumed to be zero, the conduit-choke
junction determines conduit exit height (X;pnquit = 0) as this will naturally be larger than
the choke’s starting height (X:noke = Lcnoke)- We assume the transition between the
choke start to conduit exit is small so the Laplace pressure is constant, and that the
pressure-head difference due to FC40 is negligible; then, we equate the Laplace pressure
in both regions such that APconauit(x = 0) = APchoke(x = 1) and hence Rionauit(x=0) =

. h . . .
Rchoke(x = 1)+ As the radius of curvature R = %, we solve for conduit starting-height

yielding:

hconduit(x =0)

2 2

2

2
2 2 2 2 2
Achoke T hchoke(x=L) - \/(achoke + hchoke(x:L)) - 4"a'conduith“(:hoke(x =1L)

2hch0ke(x=L)

Here, a is fixed and defined when printing the conduit, and h¢poke(x=1) is the height of
the choke before the junction and is calculated from the semi-analytical solution. Since
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the junction has a saddle shape, for conduits in Fig. 4B,C, the height of the choke,
Rchoke(x=L), is taken at a distance away from the junction equivalent to one choke width
(e.g., for choke width = 400 um, Lcpoke = 10 mm, hopokex=1) = 9.6 mm). For conduits
with geometries where a onguit > Peonduit @aNd Achoke > Rcnoke, the radius of curvature

2
is simplifiedto R = Z—h and thus:

2
aconduithchoke(x =L)

hconduit(x =0) — 2
achoke

In this case, introducing a choke has the effect of increasing h.,nquit Proportionately to
2 .

%, and maintains the conduit at an approximately constant height upstream of the
choke

choke due to the small pressure drop.

Semi-analytical solution for shear stress
We evaluate the wall shear stress at any location along conduit length and any z-
location across its width. Starting from Eq. S6 and substituting u,,,, with Eq. S10 yields:

Qh,*
u = — S41
max(z) 0-6hmax3 a ( )
. _, du . I _ (1 _ W . du _ 8y
Sincet=u s and differentiating u(y) = (1 —h%mx) Umax 10 Obtain o W Umaxs
we express the shear stress in the conduit as:
8uy
Tmax(z) = 52 Umax(z) (542)
h,
Substituting U, qx(z) from Eq. S41 into Eq. S42 we get:
. _ 8Qu y
max@) = 0 6h, . 2a
Wall shear stress is evaluated at y = % hence:
4Quh,
T = — 543
max(z) 0-6hmax3a ( )
At the conduit centre (z = 0), h, = h,;,4, therefore Eq. S43 becomes:
4
o (S44)

Tmax(0) = m
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EXpressing Tonax(z) in terms of Ty, .0y Using Eq. S44:

h,
Tmax(z) = Tmax(0) h_ (§45)

max

Now evaluating 7,,,, by substituting h,,,,, with Eq. S20 finally yields:

uyQ hy,
adx My, gy

Tmax(z) = 1.28 (546)

Effect of a choke on the gradient of wall shear stress
The addition of a choke creates a region of nearly uniform shear upstream of the choke

. dt, . . . . o

(i.e., d—; is very small). This shear distribution would be achieved in a conduit without

choke, but at a much farther distance. The choke allows users to ‘skip ahead’ through a
i ) T . . d

conduit to reach a desired shear stress distribution. Conduits with small d—; can be

obtained at operational scales (that fit in 60 mm dishes) that would require much longer
lengths of conduit otherwise. To investigate the order-of-magnitude effect of a choke on

Z—;, consider the two systems in Fig. S11.

hconduit: Aconduits Xconduit

Rchoker Achoker Xchoke I
conduit 1 +—(

| h'effJ Qconduit: Xef f

conduit 2 +—

Fig. S11. Conduits with and without a choke. Both conduits are perfused at the same flow rate Q,
and A;onquit i conduit 1 is equivalent to ay,qyic in conduit 2.

Aconduit

2
) . From our semi-analytical
Qchoke

Due to the choke in conduit 1, hopnauit = Pehoke (

equation:
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0.25

_ (26-08Qﬂachokexchoke)
choke —
v 0.25
26-08Q.uach0kexchoke>. <aconduit)2
14

hconduit ~ ( (547)

QAchoke

Next, for the same flow rate we determine the distance x,; that conduit 2 (which has
width aconayic) Would need to reach so that hyrr = heonauir at the junction between
conduits (i.e., the effective length introduced by the choke):

0.25

0.25
(26-08Qﬂaconduitxeff) _ (26-08Qﬂachokexchoke) (aconduit)2
)4 14 Qchoke
_ Aconduit 8
aconduitxeff = QchokeXchoke
QAchoke

Aconduit 7
—_— (548)

< Xeff = Xchoke ( a
choke

As an example, if Xcpoke = 1 MM, acpore = 0.2 mm, and aconauic = 0.5 mm, then
xeff = 0.6 m.

. . d . .
Next, we evaluate the relationship between d—; and the distance x along the conduit.
Shear stress in the conduit (@hpax(x)) is:

7=1.28 (%)0'5 (549)

As:
3
(@) )5 )
dx \\a3x ~ 2% o3«
Then:
d 1 2 1 2
2 2
4T« a (—) o (—) (550)
dx a3x ax
Using Eq. S48, the shear gradient after the choke is:
3
3 2
dt 1 2 1
(—) X|———m | « = (551)
dx choke AconduitXeff . Qconduit
QAconduitXchoke Achoke
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The shear gradient for a conduit without choke at X, oke is:

ST

dt 1
5) )
dx no choke QAconduitXchoke

. d "
Hence, the change in d—; from the addition of a choke can be evaluated as:

3
() () 2
dx/ no choke — QconduitXchoke — Qconduit | 2 $53
dt - 3= ( )
(_) 2 QAchoke
dx choke
1
Aconduit 4
QAconduitXchoke (a—)
choke

In our example, % in the conduit after the choke will be ~15000 fold smaller than % in

the straight conduit at the same distance from the exit (equivalent to a 99.99%

decrease). Table S3 gives the percent change in T over 1 cm upstream of a choke, for

. a i
various choke lengths and —£2zduit
Achoke

ratios.

Table S3. % change in T over 1 cm for varying half-width ratios and choke lengths

Aconduit % change in T over 1 cm with choke length of:
Achoke 1 mm 5 mm 10 mm
2.5 0.81 0.16 0.08
2 3.69 0.77 0.39
1.25 43.18 16.07 9.08
1 69.85 42.26 29.29

Error from 2 simplification on shear stress gradient in choked conduits
The height of a conduit after a choke is estimated without simplifications as:

2 2 _ 2 2 2 _ An2 2
Achoke + hchoke \/(achoke + hchoke) 4'aconduithchoke
(554)

hconduit(exact) = oh
choke

However, Eqg. S54 is simplified when assuming the radius of curvature is expressed as

a? . Idi
R = o vie ding:

Aconduit 2
hconduit(simp) = Rcnoke ( ) (855)
Achoke

The error or difference from this simplification is given as:
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hconduit(exact) _

(556)
hconduit(simp)

where c is a constant dependent on h poke, Achoker aNd Aconauit- From Eq. S55, the
effective length introduced by the choke is determined (as in Eq. S48):

Aconduit)’

Xeff(simp) = xchoke( e ) (857)

QAchoke
Introducing Eqg. S57 into the expression for wall shear stress (Eq. S49) yields:
0.5
Quy
imp = 1.28 S$58
Tstmp <a3xeff ( )

The radius of curvature simplification from Eq. S55 introduces an error (c) in Eq. S58;
this is accounted for using Eq. S56, such that x, ;s and T become:

Aconauit’
Xeff(corrected) — xchokec4 ( ;0: :l ) (559)
choke
0.5
Tcorrected = 128( 3 ouy > (560)
a xeff(corrected)

Finally, as in Eq. S44, T may also be expressed in terms of conduit height rather than
effective length, using the exact (Eg. S54) or simplified equation (Eq. S55). The exact
expression using Eq. S54 is:

4Qu
Texact = 0.6h2 (561)

conduit(exact) Aconduit

As shear stress in Fig. 4D is calculated using Eq. S61, we evaluate the effect of the radius
of curvature simplification on 7 (Eqg. S58), and subsequent correction (Eq. S60), for the
choked conduits in Fig. 4B. Table S4 summarizes the estimated % change in T for these
conduits over 1 cm upstream of the choke, showing equivalent results for Eq. S60 and
S61.
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Table S4. Effect of h/a simplification on T predictions

choke length 1 mm 5mm 10 mm
hconduit(exact) (Eq. S54) [um] 157 287 322
hconduit(simp) (Eq. S55) [um] 152 220 237

c (Eq. S56) 1.03 1.31 1.36
Xeff(corrected) (Eq. 59) [m] 0.66 7.39 11.19
Tsimp @ choke (Eq. S58) [Pa] 9.76E-04 4.65E-04 3.87E-04
Tsimp @ 1 cm (Eq. S58) [Pa] 9.68E-04 4.64E-04 3.87E-04
dt/dx 1cm (%) 0.85 0.20 0.15
Teorrected @ choke (Eg. S60) [Pa] 9.13E-04 2.73E-04 2.10E-04
Teorrected @ 1 cm (Eq. S60) [Pa] 9.06E-04 2.73E-04 2.10E-04
dt/dx 1cm (%) 0.75 0.07 0.04

Culturing cells in fluid-walled conduits

We plated human umbilical vein endothelial cells (HUVECs) in conduits (+ choke) and
perfused them overnight (at 25 or 50 pL/h) to look at the effect of flow on cell viability.
Fig. S11 shows that after 24 h, flow had little effect on HUVEC morphology or alignment,
which is to be expected from the magnitude of the shear stress in such conduits (see Fig.

4D) [3].

Fig. S12. HUVEGs in fluid-walled conduits. Cells were plated in 4 conduits + chokes (conduit width 1
mm; choke width 400 um) and incubated overnight before flow was applied. Insets show close-ups of
cells in conduits. (i) Control conduit without flow. White dashed lines indicate conduit pinning lines
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(triple contact line polystyrene-media-FC40). (ii) Conduit without choke, perfused at 25 pL/h. (iii)
Conduit with choke, perfused at 25 uL/h. (iv) Conduit with choke, perfused at 50 pL/h.

Movie S1. Addition of FBS to DMEM immediately induces the no-slip condition

Two square chambers (1.9 x 1.9 mm) each containing 400 nL DMEM plus 4 mg/ml red dye (Allura Red
in H,0, Sigma) and 3-10 um glass beads (1:1000 dilution, Polysciences, Inc., 07666) are each
surrounded by FC40 walls; these chambers sit in a dish filled with FC40 on the Olympus microscope
(4x objective). Next, the jetting needle (diameter 500 um) — held vertically by attachment to the
microscope condenser, filled with FC40, and connected to a syringe pump — is lowered through the
fluorocarbon until ~1 mm above the footprint of the FC40 wall between the two chambers. This needle
gives the circular shadow in the middle of video images. The movie begins as the pump is started and
projects a submerged FC40 jet downwards at 8 uL/s; this induces shear at the FC40:medium interface
so beads in both chambers swirl rapidly. After ~10's, 0.5 uL DMEM + 10% FBS is manually pipetted into
the bottom chamber; beads in the inoculated chamber rapidly stop moving, as those in the upper one
continue. This shows that FBS immediately induces a no-slip interface.
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