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Abstract

Transcription is a fundamental cellular process, and the �rst step of gene expression. In

human cells, it depends on the binding to chromatin of various proteins, including RNA

polymerases and numerous transcription factors (TFs). Observations indicate that these

proteins tend to form macromolecular clusters, known as transcription factories, whose

morphology and composition is still debated. While some microscopy experiments have

revealed the presence of specialised factories, composed of similar TFs transcribing

families of related genes, sequencing experiments suggest instead that mixed clusters may

be prevalent, as a panoply of di�erent TFs binds promiscuously the same chromatin

region. The mechanisms underlying the formation of specialised or mixed factories remain

elusive. With the aim of �nding such mechanisms, here we develop a chromatin polymer

model mimicking the chromatin binding-unbinding dynamics of di�erent types of

complexes of TFs. Surprisingly, both specialised (i.e., demixed) and mixed clusters

spontaneously emerge, and which of the two types forms depends mainly on cluster size.

The mechanism promoting mixing is the presence of non-speci�c interactions between

chromatin and proteins, which become increasingly important as clusters become larger.

This result, that we observe both in simple polymer models and more realistic ones for

human chromosomes, reconciles the apparently contrasting experimental results

obtained. Additionally, we show how the introduction of di�erent types of TFs strongly

a�ects the emergence of transcriptional networks, providing a pathway to investigate

transcriptional changes following gene editing or naturally occurring mutations.

Introduction

The 3D organization of chromatin, the �lament composed of DNA wrapped around histone

proteins which constitutes the building block of mammalian chromosomes, is a dynamic

and intricate blueprint that is thought to be important for cellular function and gene

expression [1]. Recent advances in microscopy and high-throughput sequencing [2] have

revealed a rich hierarchy of 3D chromatin structures within the cell nucleus. These range

from relatively small DNA loops of tens to hundreds of base pairs (bps), to large organised

domains spanning over hundreds of thousands of base pairs (or kilo-base pairs, kbp),

which are referred to as topologically-associating domains (TADs), whose segments

interact more frequently among each other than with other parts of the genome. At even

larger scales, the genomic material divides into A (active) and B (inactive) compartments,

which have di�erent gene activity and 3D compaction, whereas di�erent chromosomes

occupy distinct territories inside the nucleus [3–5].

A central question in cellular biology is the extent to which this rich and multi-scale

organization is in�uenced, or even driven, by transcription [6], the fundamental biological

process during which the information encoded in a segment of DNA is converted into RNA,

to be then translated into proteins. On the one hand, it is widely believed that TADs remain

largely invariant in cells with very di�erent transcriptional programs (e.g., belonging to
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di�erent organs) – which points to little role for transcription in determining structure [7]

(for an opposing view, see [8]). On the other hand, enzymes engaged in the process of

transcription, known as RNA polymerases, tend to form aggregates inside the nucleus,

often referred to as phase-separated condensates, hubs, or transcription factories [6, 9–12].

Being attached to a factory strongly enhances the transcriptional activity of a gene [6, 9],

therefore factories are a primary example of a structural unit with a clear transcriptional

role.

A recent e�ective way to investigate this intricate connection between transcription and

3D chromatin structure has been provided by polymer models together with Brownian

dynamics simulations [13–25]. This in silico approach has pointed to a simple and generic

mechanism – the bridging-induced attraction or bridging induced phase separation – that

spontaneously drives formation of transcription factories [26, 27]. Such microphase

separation is due to the fact that, in this type of modelling, TF and polymerase complexes

(TF:pol) are usually depicted as multivalent elements, so that each of them can

simultaneously bind to several chromatin sites: this is reasonable as a complex of proteins

can easily have more than one chromatin-binding domain. Multivalent binding triggers a

positive feedback: a TF:pol binding to the chromatin �lament provokes a local increase of

chromatin density as it attracts several chromatin sites. The higher chromatin density, in

turn, recruits further TF:pol resulting in a cluster, or transcription factory, formation. This

feedback is eventually arrested by entropic costs associated with crowding and looping

more and more DNA [27, 28].

The existence of clusters prompts the question: does a typical cluster mainly contain just

one kind of TF, or many di�erent ones? On the one hand, microscopy experiments suggest

that di�erent factories specialize in transcribing di�erent sets of genes, so that any one

factory typically contains mainly one type of TF. For example, active forms of RNA

polymerases II and III are each housed in distinct nucleoplasmic factories that make genic

and snRNA transcripts respectively [9, 29, 30]. Similarly, distinct ERα, KLF1, and NFκB

factories specialize in transcribing genes involved in the estrogen response, globin

production, and in�ammation [31–33]. One important consequence of the formation of

such specialized factories is the creation of 3D networks [34], in which genes sharing the

same TFs are co-transcribed in the same clusters.

On the other hand, and in contrast to the evidence for specialized factories, chromatin

immuno-precipitation (ChIP) techniques have revealed the existence of particular

chromatin fragments, called “highly-occupied targets” (or HOT), which are promiscuously

bound by several di�erent TFs [35–37]. Additionally, single-cell transcriptional pro�ling

points to expression levels varying continuously as cells di�erentiate into other cell types,

which points to a complex interplay between many factors, rather than a few acting as

binary switches [38, 39]. Interestingly, simulations of the types described above which

involve 2 di�erent kinds of TFs, each one binding speci�cally to two di�erent TU types,

show the resulting clusters often contain bound TFs of just one type, rather than mixtures,

although this aspect has not been investigated in depth [11, 13, 21, 23, 26, 27, 40–48].
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Here, we develop a polymer model with the aim of investigating the mechanisms leading

to the formation of specialised or mixed factories: i.e., clusters formed by a single type or

by multiple types of TFs respectively. Within our framework, chromatin is depicted as a

polymer composed of a multicolour sequence of beads, corresponding to transcription

units (TUs) of di�erent types (or colours), each one binding to the corresponding type of

transcription factors, represented as additional spheres di�using in the system. With

respect to previous works on multicolour models [22, 27, 49–52], there are two important

di�erences. First, here we model chromatin transcription by making the assumption that a

chromatin bead is transcribed when it binds to a TF. In this way we are able to investigate

the link between 3D structure of active chromatin and transcription (transcriptional

patterns and emerging transcriptional correlation networks), rather than solely structure

as done in previous models. Second, we study the morphology of the ensuing

transcriptional clusters, studying their composition and the way in which it can be a�ected

by the 1D binding landscape, and the balance between non-speci�c and speci�c chromatin-

TF interactions.

Our main result is that specialised (demixed) and mixed clusters are not mutually

exclusive. More speci�cally, we unexpectedly �nd a transition, or crossover, between a

specialised and a mixed clusters regime, in�uenced by the size of emerging clusters.

Smaller clusters are typically specialised, whereas larger clusters are more likely to be

formed by di�erent TF types. This result enables us to reconcile the apparently contrasting

experimental observations cited above: it is no longer surprising that specialised and

mixed clusters can coexist within the same cell, as cluster size depends, for instance, on the

local 1D pattern of TU binding sites along chromatin. We further integrated our multi-color

model with experimental data, speci�cally DNase hypersensitive site (DHS) locations, to

study human chromosomes. Here, two colours are considered as the simplest extension of

the previous DHS model with one color [11], by distinguishing between active TF:pol

complex that bind respectively to cell-type-invariant and cell-type-speci�c TUs in strings

mimicking whole human chromosomes. Finally, the existence of specialized and mixed

factories is further validated by incorporating di�erent types of proteins into more

complex and realistic chromatin models, such as the “highly predictive heteromorphic

polymer model” (HiP-HoP model), which accounts for loop extrusion by cohesin-like

complexes, the presence of inactive or silenced chromatin, and chromatin

heteromorphism [41].

Results

Toy model with di�erent transcription factors

To try to solve the apparently contrasting views of segregated and mixed factories we start

by introducing a new simple polymer model, where a 3 Mbp chromatin fragment is

represented by a chain of 1000 beads (each 30 nm in diameter, and corresponding to 3

kbp). Di�erent kinds of TU beads are positioned regularly in this string, but are coloured

randomly yellow, red, or green (we refer to this case as the random string). Di�erent kinds
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of TFs are modelled as di�using spheres, at �rst approximation of the same size of

chromatin beads (see later for simulations changing the TFs size), which bind reversibly

and strongly to beads of the same colour, and weakly to all others (see Fig. 1A, and Methods

for further details). After running a Brownian-dynamics simulation, Fig. 1B shows a typical

3D conformation found in the steady state. Remarkably, clusters of TUs and TFs with

distinct colours appear and disappear spontaneously. Such clustering is driven by the

positive feedback illustrated in Fig. 1C; it depends critically on TFs being able to form

molecular bridges that anchor loops [11, 26, 27].

Figure 1.
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Toy model, with TUs coloured randomly (the random string).

(A) Overview. (i) Yellow, red, and green TFs (25 of each colour) bind strongly (when in an on state) to 100

TUs beads of the same colour in a string of 3000 beads (representing 3 Mb), and weakly to blue beads. TU

beads are positioned regularly and coloured randomly, as indicated in one region of the string. TFs switc…

Show more

We now assume that the spheres represent TF:pol complexes, and make the reasonable

assumption that a TU bead is transcribed if it lies within 2.25 diameters (2.25σ) of a

complex of the same colour; then, the transcriptional activity of each TU is given by the

fraction of time that the TU and a TF:pol lie close together. Fig. 1D reports the mean activity

pro�le down the string; TUs with the lowest activities are �anked by di�erently-coloured

TUs, while those with the highest activities are �anked by similarly-coloured TUs (dashed

rectangles in Fig. 1D). As expected, a single-colour model with the same TU placement leads

to a �at activity pro�le (Figure S1A). Clearly, close proximity in 1D genomic space favours

formation of similarly-coloured clusters.

We next examine how closely transcriptional activities of di�erent TUs correlate [53]; the

Pearson correlation matrix for all TUs is shown in Fig. 1E. Correlations between

neighbouring TUs of similar colour are often positive and strong, resulting in square red

blocks along the diagonal (coloured boxes in Fig. 1E highlight the 3 clusters shown in the

zoom in Fig. 1B). This e�ect is again due to the self-assembly of clusters containing

neighbouring TUs of the same colour. In contrast, neighbours with di�erent colours tend to

compete with each other for TF:pols, and so down-regulate each other to yield smaller

correlations. Correlations are more trivial in the single-color counterpart of Fig. 1, where

the matrix yields only a positive-correlation band along the diagonal (Figure S1B). These

results provide simple explanations of two mysterious e�ects – the �rst being why adjacent

TUs throughout large domains tend to be cotranscribed so frequently [54]. The second

concerns how expression quantitative trait loci (eQTLs) work. Current models see them

doing so post-transcriptionally in highly-convoluted ways [11, 55], but we have argued that

any TU can act as an eQTL directly at the transcriptional level [11]. Here, we see individual

TUs up-regulate some TUs and down-regulating others – de�ning features of eQTLs that

can lead to genetic e�ects like “transgressive segregation” [56]. The latter phenomenon

refers to the observation of alleles with signi�cantly higher, or signi�cant lower, than

average expression of a target gene, and can be, for instance, caused by the creation of a

non-parental allele with a speci�c combination of QTLs with opposing e�ects on the target

gene.

Local mutations

To explore the impact of introducing di�erent colors, we characterize the e�ects of local

mutations. We choose the most active region in the random string – one containing a

succession of yellow TUs – and “mutate” 1 − 4 of these TUs by recolouring them red (Fig.

2A). These simulations are inspired by editing experiments performed using CRISPR/Cas9

[57]. Typical snapshots show red mutants are often ejected from yellow clusters (Fig. 2Bi),

03/01/2025, 09:37 Cluster size determines morphology of transcription factories in human cells

https://elifesciences.org/reviewed-preprints/103955#mainMenu 7/33



or cluster together to leave their wild-type neighbours in isolation (Fig. 2Bii). These

changes are re�ected in activity pro�les (Fig. 2C; arrows indicate mutations). As the

number of mutations in the cluster increase, activities of yellow beads in that cluster

decrease (Fig. 2D), and new red clusters often emerge (Fig. 2B,ii; Fig. 2Ciii).

Figure 2.

Simulating e�ects of mutations.

Yellow TU beads 1920, 1950, 1980, 2010, 2040 and 2070 in the random string have the highest

transcriptional activity. 1-4 of these beads are now mutated by recolouring them red. (A) The sequence of

bars re�ects the sequence of yellow, red, and green TUs in random strings with 1, 2 and 4 mutations (bl…

Show more
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To con�rm that 4 mutations in a yellow cluster often lead to the development of a red

cluster, we monitor cluster dynamics over time. Fig. 2Ei illustrates a typical kymograph

illustrating changes in activity of all TUs in the wild-type; yellow, red, and green pixels

mark activity of respective TUs, and black ones inactivity. In this particular simulation, a

yellow cluster in the region that will be mutated (marked by the blue rectangle) is present

during the �rst quarter of the time window; it then disappears to reappear half-way

through the window and then persists until the end. In the string with 4 mutations, a

yellow cluster is never seen; instead, di�erent red clusters appear and disappear (Fig. 2Eii).

Pearson correlation matrices provide complementary information: the yellow cluster in

the wild-type yields a solid red block indicating strong positive correlations (Fig. 2Fi), but

this block fragments in the string with 4 mutations (Fig. 2Fii). These results con�rm that

local arrangements of TUs on the genetic map determine the extent to which any

particular TU will cluster and so become active.

Variations in TF concentration

The concentration of TFs is expected to in�uence the global activity patterns observed and

can be adjusted in our model accordingly. These simulations are motivated by experiments

that reduce global TF levels using auxin-induced degrons [58]. Speci�cally, we reduce the

concentration of yellow TFs binding to the random string by 30% (Fig. 3A). As expected,

transcriptional activity falls both globally and locally (see yellow dotted rectangles in Fig.

3B and C). Surprisingly, activity of a nearby cluster of red TUs (numbers 1080, 1110, 1170,

1200, and 1530 to 1650) increases by 50% (red dotted rectangles in Fig. 3B and C). This

e�ect is speci�c, in the sense that there is little e�ect on green clusters (e.g., compare Fig.

1D with Fig. 3B). We attribute this to a now-reduced steric competition for 3D space by

yellow neighbours – fewer yellow clusters are present to stunt growth of nearby red ones.

Fig. 3D shows the di�erence in correlation between the case with reduced yellow TFs and

the case displayed in Fig. 1E. We can notice a change in correlation between the yellow

cluster (boxed) and its neighbour clusters, even if distant. For instance, yellow clusters are

more probable to be found both turned o� due to the lack of yellow TFs, and thus their

activation becomes more correlated. At the same time, when yellow clusters are turned o�

the activation of other clusters can be a�ected, with a increase or decrease of correlation.

Overall, these results show there are many statistically-signi�cant correlations in activities

both near and far away on the genetic map – much like those suggested by the omnigenic

model [55].

Figure 3.
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Reducing the concentration of yellow TFs reduces the transcriptional activity of most yellow TUs while

enhancing the activities of some red TUs.

(A) Overview. Simulations are run using the random string with the concentration of yellow TFs reduced

by 30%, and activities determined (means from 100 runs each lasting 8 105τB). (B) Activity pro�le. Dashe…

Show more

E�ects of 1D TU patterns on transcriptional activity

To gain a deeper understanding of the local e�ects revealed by the random string, we now

analyze and compare various toy strings that feature regular and repeating patterns of

colored TUs (Fig. 4 and methods for further details). Two results are apparent. First,

activities (Fig. 4Bii) in the 6-pattern case are higher overall (compare horizontal dotted

lines), and more variable (compare activities of the two central TUs within each repeat

with peripheral ones) relative to the 1-pattern case (Fig. 4Bi). This is consistent with

positive additive e�ects acting centrally within each 6-pattern repeat, coupled to

competitive negative e�ects of �anking and di�erently-coloured repeats at the edges.

Second, the 6-pattern also has a Pearson correlation matrix (Fig. 4Cii) that is highly-

structured, with a checkerboard pattern; red blocks on the diagonal indicate high positive

correlations (so the 1D 6-pattern clearly favours 3D clustering). [Such a checkerboard

pattern is not seen with a singlecolor model that has a correlation matrix with one red

continuous diagonal when TUs are regularly spaced (Figure S1).] Additionally, blue o�-
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diagonal blocks indicate repeating negative correlations that re�ect the period of the 6-

pattern. These results show how strongly TU position in 1D genomic space a�ect 3D

clustering and activity, and that these e�ects depend on inclusion of more than one colour.

Figure 4.

Clustering similar TUs in 1D genomic space increases transcriptional activity.

(A) Simulations involve toy strings with patterns (dashed boxes) repeated 1 or 6 times. Activity pro�les

plus Pearson correlation matrices are determined (100 runs, each lasting 8 105τB). (B) The 6-pattern yields

a higher mean transcriptional activity (arrow highlights di�erence between the two means). (C) The 6-…
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Show more

Emergent transcriptional correlation networks

We have seen many positive and negative correlations between activities of TUs in the

random string (Fig. 1). We now select signi�cant correlations from Pearson correlation

matrices (those which are > 0.2, Fig. 5A) to highlight emergent interaction networks [11]. In

such networks, nodes represent each TU from �rst to last (other beads are not shown), and

edges indicate positive (black) or negative (grey) correlations in activities of node pairs.

Even for the toy random string, these networks prove to be very complex (Figure S2A).

They are also “smallworld” (i.e., most nodes can be reached from other ones by a few steps

[11, 59]). Given this complexity, we now consider simpli�ed versions. Thus, in Fig. 5Ai, only

interactions between red TUs are shown (the �rst red TU is at position 60, the last at

position 2910, and interactions between di�erent colours are not depicted). As expected,

activities of most red TUs are positively correlated with those of nearby TUs. Conversely,

negative correlations connect distant TUs, as found in the singlecolor model [11]; as we

have seen, binding of red TFs to any red cluster reduces the number available to bind

elsewhere.

Figure 5.
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TU transcriptional networks and demixing.

Simulations are run using the toy models indicated, and complete correlation networks (qualitatively

reminiscent of gene regulatory networks) constructed from Pearson correlation matrices. respectively

(above a threshold of 0.2, co(rres)ponding to a p-value ∼ 5 10−2). The complete network consists of n =…

Show more

In Fig. 5Aii, we consider just interactions between red TUs and green TUs. Remarkably,

close-range positive correlations (black edges) are still seen between TU pairs that no

longer bind TUs of the same colour. We suggest this is due to the presence of weakly-

binding beads. Speci�cally, a red cluster organises a surrounding cloud of weakly-binding

beads, and these will bind some green TFs that – in turn – bind green TUs. In contrast to

the same-colour network in Figure 5Ai, there are now more long-range positive

correlations, showing that the presence of multiple colors enriches the emerging network.

To obtain further quantitative insight into these subtle yet remarkable correlations, we

compute the average of those between same- and di�erent-colour TUs as a func- tion of

genomic separation (Fig. 5B). For the random string, same-colour correlations switch from

clearly positive to slightly negative at about 300 beads (Fig. 5Bi, red curve). Di�erently-

coloured correlations yield a broadlysimilar switch, although positive and negative values

are weaker (Fig. 5Bi, blue curve). The 6-pattern gives qualitatively similar trends, with the

magnitude of di�erentlycoloured correlations dampened further (Fig. 5Bii). In contrast, the

1-pattern string yields largely overlapping curves (Fig. 5Biii). These results illustrate how

the sequence of TUs on a string can strikingly a�ect formation of mixed clusters; they also

provide an explanation of why activities of human TUs within genomic regions of

hundreds of kbp are positively correlated [60].

To quantify the extent to which TFs of di�erent colours share clusters, we introduce a

demixing coe�cient, θdem (de�ned in Fig. 1), which can vary between 0 and 1. If θdem = 1,

a cluster contains only TFs of one colour (and so is fully demixed); if θdem = 0, it contains

both red and green TFs in equal numbers (and so is fully mixed). Intuitively, one might

expect θdem to fall as the number of adjacent TUs of similar colour in a string fall; this is

what is seen with the 6- and 1-patterns – strings with the most and least numbers of

adjacent TUs of similar colour, respectively (Figure S2B; shown schematically by the cluster

cartoons in Fig. 5B).

Our results then show that in cases where same- and di�erent-colour correlations overlap

(as in the 1-pattern string), clusters are more mixed (have a larger value of θdem). Instead,

in cases where same- and di�erent-color correlations diverge, or are more di�erent (as in

the 6-pattern string), then clusters are typically unmixed, and so have a larger value of

θdem (Figure S2B). Mixing is facilitated by the presence of weakly-binding beads, as

replacing them with non-interacting ones increases demixing and reduces long-range

negative correlations (Figure S3).
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Therefore, the sequence of strong and weak binding sites along strings determines the

degree of mixing, and the types of small-world network that emerge. If eQTLs also act

transcriptionally in the way we suggest [11], we predict that down-regulating eQTLs will lie

further away from their targets than up-regulating ones. More generally, we suggest that

the presence of multiple TF colours provides a powerful pathway to enrich and modulate

transcriptional regulation.

Transcriptional activity and comparison with real human chromosomes

We now simulate human chromosome 14 (HSA 14) in HUVECs, with individual beads in the

string coloured appropriately (Fig. 6A). Thus, TUs transcribed uniquely in HUVECs are

coloured red, housekeeping TUs (i.e., ones also expressed in a stem cell, namely H1-hESCs)

are green, euchromatic regions blue, and heterochromatic ones grey. Fig. 6B shows a

typical snapshot; red and green clusters again form spontaneously. We next determine

transcriptional activities, rank them in order from high to low, and compare binned rank

orders with those obtained experimentally by GRO-seq (Fig. 6C); most counts lie along the

diagonal, meaning there is a good agreement between the two data sets. More

quantitatively, Spearman’s rank correlation coe�cient is 3.66 10−1, which compares with

3.24 10−1 obtained previously using a single-colour model [11]. In both cases the estimated

uncertainty is of order 10−3 (mean and SD obtained using the bootstrap technique over 100

trials); consequently, use of an additional color provides a statistically-signi�cant

improvement (p-value < 10−6, 2-sided t-test).

Figure 6.

Comparison of transcriptional activities of TUs on di�erent human chromosomes determined from

simulations and GRO-seq.

(A) Overview of panels (A-C). The 35784 beads on a string representing HSA14 in HUVECs are of 4 types:

TUs active only in HUVECs (red), “house-keeping” TUs – ones active in both HUVECs and ESCs (green),…

Show more

Activity predictions are also improved compared to the one-colour model with HSA 18 and

HSA 19 in HUVECs, plus HSA 14 in GM12878 (Figure 6D and Figure S4). However,

Spearman’s rank coe�cient for gene-poor HAS 18 is about twice that for gene-rich HSA 19;

this may be due to additional regulatory layers in regions with high promoter density.

These results show that our multicolour polymer model generates strings that can mimic

structures and functions found in whole chromosomes. Additionally, simulated contact

maps show a fair agreement with Hi-C data (Figure S5), with a Pearson correlation r ∼ 0.7

(p-value < 10−6, 2-sided t-test). Because we do not include heterochromatin-binding

proteins, we should not however expect a very accurate reproduction of Hi-C maps: we

stress that here instead we are interested in active chromatin, transcription and structure
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only as far as it is linked to transcription (i.e., mainly through the formation of demixed

and mixed TF:pol clusters).

Specialized and mixed clusters

Inspection of simulation snapshots shows 1-colour clusters tend to be smaller than mixed

(2-colour) ones (Fig. 7A). To quantify this, we count numbers and types of TFs in individual

clusters (Figures 7B and S7). Clusters with just two bound TFs never contain both colours;

conversely, those with > 20 bound TFs never contain just one colour (Fig. 7B). We also

measure the average value of the demixing coe�cient, θdem (Materials and Methods). If

θdem = 1, this means that a cluster contains only TFs of one colour and so is fully demixed;

if θdem = 0, the cluster contains a mixture of TFs of all colors in equal number, and so is

maximally mixed. The result is shown in Fig. 7C, and shows the emergence of a crossover

between a demixed regime, corresponding to single-colour clusters, and a mixed regime,

corresponding to multiplecolour clusters, which is triggered by an increase in cluster size.

[Note that we speak of a crossover between regimes, rather than a phase transition, as

clusters are �nite-size and we do not consider any thermodynamic limit.] The cross-over

point between fully mixed and demixed (where the average value of θdem = 0.5) occurs

when there are ∼ 10 TFs per cluster (Fig. 7C): notably, this is similar to the average number

of productively-transcribing pols seen experimentally in a transcription factory [6]. Similar

results are obtained for di�erent cell types, or chromosomes (see Figs. S6 and S7 for the

case of HSA 18, 19 in HUVEC, and HSA 14 in GM12878), and chromosomes under

con�nement (Fig. S10), with realistic chromatin densities. The latter situation suggests that,

as far as the formation of transcription factories and the crossover between mixed and

demixed clusters are concerned, chromatin density does not play a crucial role. Other

phenomena can indeed depend on density, especially with respect to global chromatin

structure (e.g., entanglements and rare long-range contacts). Additionally, simulations of

HSA 14 in HUVEC cells with di�erent size of TF:pols (0.5σ and 0.16σ) also lead to similar

results (see Fig. S9). Importantly, the critical number of TFs per cluster separating demixed

and mixed cluster is around ∼ 10 in all these di�erent cases. These results suggest that

neither the sequence of TUs and its ratio to TFs (which varies among chromosomes, as for

instance HSA 18 and HSA 19 are gene poor and gene rich respectively), nor the chromatin

density a�ect the nature of the crossover between the regimes of demixed and mixed

clusters.

Figure 7.
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Small clusters tend to be unmixed, large ones mixed.

After running one simulation for HSA 14 in HUVECs, clusters are identi�ed. (A) Snapshot of a typical �nal

conformation (TUs, non-binding beads, and TFs in o� state not shown). Insets: a large mixed cluster and a

small demixed one. (B) Example clusters with di�erent numbers of TFs/cluster (2, 10, 20, 30, 40) chosen …

Show more

The existence of a crossover between specialized (demixed) and mixed factories with

increasing size is therefore a generic feature of our model, and it can be explained by the

following physical argument depending on non-speci�c binding. Two red TFs in an

unmixed cluster might stabilise 3 loops, and so bring into close proximity only a few non-

speci�c binding sites that could bind a green TF. In contrast, 10 red TFs in a cluster will

stabilise many loops that inevitably bring into close proximity many non-speci�c binding

sites – and this makes it highly likely that some green TFs will also bind nearby to create a

mixed cluster. The mixing crossover provides a way to reconcile observations that some

clusters are unmixed (like factories rich in polymerases II and III), and others highly mixed

(like HOTs). This is because clusters in a single cell are generally polydisperse, or di�er in

size (e.g., due to the local chromatin environment, or the patterning of TUs along the

genome), hence mixed and specialised factories can coexist in the same nucleus. Note that

cluster size is a key parameter because it strongly a�ects the balance between non-speci�c

and speci�c chromatin-protein interaction.

Finally, as for the toy model, the balance between mixing and demixing determines

correlation patterns. For example, activity patterns of same- and di�erently-colored TUs in

the whole chromosome (Figure S8) are much like those in the 1-pattern model (Fig. 5Biii).

We attribute this to ∼ 78% TFs being in mixed clusters (θdem < 0.5), and so inevitably the

resulting interactions will dominate the pattern seen.

Our model is already inherently out of thermo-dynamic equilibrium, as it includes non-

equilibrium switching between binding and non-binding states for chromatin-binding

proteins, resembling ATP-dependent post-translational modi�cation of such proteins[61].
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There are though important principles of chromatin organisation which the presented

model does not consider. First, an important remaining question is whether other active

(ATP-consuming) processes naturally present in the nucleus, such as loop extrusion [62],

a�ect the results we found. Second, following the same logic behind the multicolor

polymer model presented here, it is interesting to ask whether the presence of additional

types of inactive, as well as active, TFs and chromatin beads changes the picture.

To answer these questions, we have turned to a more complex framework, and to the HiP-

HoP model, which includes loop extrusion by cohesin-like complexes and chromatin

heteromorphism [41, 63], as well as accounting for inactive, as well as active, chromatin

and TFs. Speci�cally, we performed simulations for HSA14 in HUVEC using a multicolor

version of the HiP-HoP model (see SI for more details). A typical con�guration is shown in

Figure 8A, where grey regions represent locally compact regions (which are poor in

H3K27ac), while cyan regions represent disrupted regions (which are enriched in

decompacted chromatin and in H3K27ac). In addition, H3K27me3 and H3K9me3 data were

used to determine the chromatin binding sites for polycomb-like and heterochromatin-

associated proteins (such as HP1): these are represented in yellow and blue respectively. As

in the previous DHS model, TUs only present in HU-VEC are represented in red, while the

house-keeping ones in green. Inspection of simulation snapshots shows the presence of

small clusters that are demixed (Fig 8C) and large cluster that are mixed (Fig. 8B). We also

measure the average value of the demixing coe�cient, θdem (Fig. 8 D). As in the simpler

DHS model, the crossover point between fully mixed and demixed (where the av-erage

value of θdem = 0.5) occurs when there are ∼ 10 TFs per cluster. These simulations further

con�rm the robustness and generality of our results regarding the mixing-demixing

crossover between specilized and mixed transcription factories.

Figure 8.
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HiP-HoP model simulations: small clusters tend to be unmixed, large ones mixed.

(A) Snapshot of a con�guration adopted by HSA14 in HUVECs, within the HiP-HoP model. Grey regions

represent less accessible chromatin regions poor in H3K27ac, while cyan regions represent those

enriched in H3K27ac. In addition, H3K27me3 and H3K9me3 peaks determine the chromatin binding site…

Show more

Discussion and conclusions

In summary, in this paper we have used coarse-grained simulations to study the 3D

structure of human chromatin, its transcriptional dynamics, and their mutual relationship.

Unlike previous works [11, 27], here we adopt a multicolour model, viz a polymer model in

which chromatin interacts with di�erent types (colours) of complexes between

polymerases and chromatin-binding transcription factors (TF:pols). This accounts for the

important biological fact that most eukaryotic cells show di�erent kinds of RNA

polymerases and a variety of chromatin-binding proteins, with di�erent biological scopes.

Our model yields a number of experimentally relevant results.

First, we characterise the morphology of transcription factories (or clusters), arising in our

model through the bridging-induced attraction [26]. When these clusters are small, they

typically contain TFs of just one colour; these are reminiscent of the specialized

transcription factories found in the nucleoplasm that contain active forms of just pol II or

pol III – but not both [64]. Instead, when factories are large, they are typically mixed (Fig.

7C); this provides a mechanistic basis for the formation of HOTs, where many di�erent TFs

bind promiscuously and weakly to segments of open chromatin that are often devoid of

high-a�nity speci�c binding sites [35–37]. The existence of a transition (more precisely, a

crossover) between demixed and mixed clusters dependent on cluster size is robust to

changes in TF:pol size (Fig. S9), chromatin density (Fig. S10) and the inclusion of active

process such as loop extrusion, incorporated through the HiP-HoP model (Fig. 8). The latter

simulations also show that the existence of a demixing transition (and the critical size

threshold) is not a�ected by other structurally important ingredients in the model such as

the presence of silence or inactive chromatin, and chromatin heteromorphism [41]. This

con�rms that the mechanism behind the transition is the shift in balance between non-

speci�c and speci�c chromatin-protein interactions: the former becomes more dominant

as cluster size increases. Interestingly, the mechanisms that determine whether a gene

belongs to a specialised or mixed fac- tory remain unclear [65]. However, our results

suggest that the TF cluster size, along with the 1D TU patterning along the chromatin

�lament, plays a crucial role, as it links 3D chromatin structure, transcription factory

morphology, and gene expression. Specialised and mixed factories thus emerge naturally

from TUs arrangement, without the need for additional ingredients, such as

posttranscriptional biochemical regulation.

Our prediction of this demixing-mixing crossover is testable experimentally, for instance

via Split-Pool Recognition of Interactions by Tag Extension (SPRITE) [66]. SPRITE can �nd
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the TFs which colocalise in space, and are hence likely to be in the same transcriptional

cluster. Therefore, by distinguishing housekeeping and cell-speci�c TUs as done in our

work, it should in principle be possible to study cluster composition and to quantify the

extent of intracluster mixing. Second, we see remarkable positive and negative

correlations in the transcriptional activities of di�erent TUs. For example, activities of

same-colour and nearby TUs tend to be strongly positively correlated, as such TUs tend to

co-cluster (Fig. 5). Conversely, activities of similar TUs lying far from each other on the

genetic map are often weakly negatively correlated, as the formation of one cluster

sequesters some TFs to reduce the number available to bind elsewhere.

Taken together, these results provide simple explanations of why adjacent TUs throughout

large domains tend to be co-transcribed so frequently [60], as they are likely to gather

together in the same cluster. Results also show how one eQTL might up-regulate some TUs

and down-regulate others, that can lead to genetic e�ects like “transgressive segregation”

[56].

Third, we can predict e�ects of local mutations and genome edits that often induce distant

omnigenic e�ects uncovered by genome-wide association studies [11, 55]. For example,

mutations that switch a binding site of one TF to another can convert a cluster of one

colour into another (Fig. 2). Similarly, global e�ects of knocking down TF levels are easily

assessed (Fig. 3).

Fourth, we also predict transcriptional activities of all TUs (both genic and non-genic) on

whole human chromosomes by including cell-type-invariant and cell-type-speci�c TFs (Fig.

6). We �nd this yields a better cor-relation with GRO-seq experimental data than a single-

colour model (where just one TF binds to all TUs similarly). This result underscores the

importance of including di�erent TFs in polymer models.

Finally, all our results point to the importance of the 1D pattern of TUs and TF-binding sites

on chromosomes in determining activity. In other words, 1D location is a key feature

determining transcriptional patterns, and so cell identity. We speculate this is why relative

locations of active regulatory elements are so highly conserved. For instance, despite

human enhancers evolving much more rapidly than their target protein-coding genes, the

synteny between the two (over distances up to 2 Mbp) is highly conserved [67, 68].

In the future, it would be valuable to consider the e�ects of hydrodynamic interactions

[69–71]. In our model, as in most chromatin polymer models in the literature [63],

hydrodynamic interactions and the resulting spatiotemporal correlations are neglected.

Whilst this choice provides signi�cant computational advantages, it also represents a

limitation. Although passive hydrodynamic �ow associated with polymer motion is likely

screened inside the nucleus, the dipolar forces exerted by molecular motors may be strong

enough to induce ordering in the intranuclear polymer melt [72]. In fact, recent

experiments using Displacement Correlation Spec-troscopy, used to map chromatin

movements through-out the nucleus in live cells, revealed that chromatin exhibits rapid,

uncorrelated motions at short timescales and slower, correlated motions over ∼ μm

domains at longer timescales [72]. While the typical sizes of the emerging clusters we
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observe is about an order of magnitude smaller than that of these domains, incorporating

hydrodynamics would help elucidate the e�ect of coherent chromatin dynamics on cluster

formation and coarsening.

In addition, it would be of interest to extend the results presented here to incorporate

many more types of TFs and TUs within the framework of HiP-HoP [41], and to include

dynamic epigenetic modi�cations [24, 73, 74]. From a theoretical point of view, we hope

our results will stimulate the development of theories to understand the mixing-demixing

crossover more fundamentally from a polymer physics view-point, as well as more work

on the interrelations between 3D structure and function in chromosomes.

Methods

Chromatin �bres are modelled as bead-and-spring polymers [11, 13, 21, 23, 26, 27, 40–47],

where each monomer (diameter σ) represents 3 kbp packed into a 30 nm sphere [11, 26,

45]. Di�erent TFs (or TF:pol complexes) are modelled as di�erently-coloured spheres (also

with diameter σ) able to bind (when in an “on” state) to cognate sites of the same colour

that are scattered along the polymer. TF:pols complexes and TUs have the same size, since

the former represents both transcription factors and polymerases, which in human cells

are about 5 nm and 25 nm respectively. We also simulated the case in which TF:pol size is

smaller (0.5σ and 0.16σ, Fig. S9) to explore the potential e�ect of protein size.

Each TF and TF:pol switches between “o�” (non-binding) and “on” (binding) states to

re�ect the post-translational modi�cations that occur in many TFs. Polymer beads are

either non-binding (“heterochromatic”), weakly-binding (“euchromatic”), or

stronglybinding (containing cognate sites). TFs bind non-speci�cally to all weakly-binding

beads, and strongly only to TUs of the same colour. TUs in our model represents regulatory

elements such as promoters and enhancers, and as discussed below in practice can be

identi�ed with DNase hypersensitive regions, which are very sticky for a wide range of

TFs, or active protein complexes [75].

The system evolves in a cubic simulation domain with periodic boundary conditions

through constant-temperature Langevin dynamics that are integrated numerically by the

LAMMPS simulation package [76].

In our model, as in most chromatin polymer models in the literature [1], hydrodynamic

interactions are neglected. While this choice o�ers signi�cant computational advantages, it

also presents a limitation. Although passive hydrodynamic �ow associated with polymer

motion is likely screened inside the nucleus, dipolar forces exerted by molecular motors

may still be strong enough to induce ordering in the intranuclear polymer melt, as

discussed in [72](see also the Discussion section for additional comments on the possible

e�ects of hydrodynamics). Averages are evaluated over 100 independent runs for each

case. The TF volume fraction of each colour is set to ∼ 3 10−5, and the polymer volume

fraction to ∼ 2 10−3. We note though that the key control parameter is the ratio between the
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number of TFs and that of TUs, for each colour. More information about the model can be

found in the Supplemental Information (SI).

Several quantities are monitored to describe the system’s behavior. Mean transcriptional

activity is measured as the fraction of time that a TU is “transcriptionally active” (i.e.,

within 2.25σ of a TF) in 100 simulations, and so represents a population average (each

simulation run may be thought of as a di�erent cell). This quantity is compared with

experimental data on transcriptional activity, obtained via GRO-seq – a method providing a

genome-wide average readout of ongoing transcription of both genic and non-genic TUs in

cell populations [77, 78]. The mean transcriptional Pearson correlation between all pairs of

TUs is also evaluated, and a graphical overview of this feature is provided via the Pearson

correlation matrix. We also analyse clusters/factories of bound and spatially-proximate

TFs, count the number of TFs of similar colour in each cluster, and introduce a demixing

coe�cient

where n is the number of colors, and xi,max the largest fraction of same-coloured TFs in a

single TF cluster. If θdem = 1, this means that a cluster contains only TFs of one colour and

so is fully demixed; if θdem = 0, the cluster contains a mixture of TFs of all colors in equal

number, and so is maximally demixed. More details can be found in the SI.

We consider two di�erent types of string, one with M = 3000 beads (or 9 Mbp) which is

referred to as a “toy” string, and a second representing a whole human chromosome.

Chromosomes are initialised in both cases as random walks. An alternative possibility

would be to start from mitotic con�guration as in [79], which would remove entanglement

in the initial condition. Experience with similar models (e.g., see [50]) suggests that a

di�erent initial condition will be important for the very large-scale structure but not for

the scale at which transcriptional clusters form, which is the one we are most interested in

here.

Toy model

The toy model is built by placing one yellow, red, or green TU every 30 weakly-binding

beads, giving a total of 100 TUs of all types in a string of 3000 beads [26]. Various di�erent

sequences of TU colour down the string are considered. In one – the “random” string – TU

colours are chosen randomly (see Fig. 1a and SI for the speci�c sequence generated). In a

second and third – the “1-pattern” and “6-pattern” strings – TU colors follow a repeating

pattern (red, then yellow, then green) 1 or 6 times (see Fig. 4). We made these choices for

the sequences of TUs as they are useful to show how 1D patterns a�ect resulting cluster

morphology. In this respect, these patterns in the toy model are only representative. At the

same time, the ratio between TFs and TUs are close to those used below for human

chromosome simulations.
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For the random string, we monitor how the system responds to di�erent perturbations.

Local “mutations” are inspired by editing experiments performed using CRISPR/Cas9 [57].

One to four mutations are mimicked by switching selected yellow beads inside a cluster of

consecutive yellow TUs (between TUs 1920 to 2070) to red ones (Fig. 2). Thus, conversion of

TU bead 1980 gives a string with 1 mutation, of 1950 and 1980 gives 2 mutations, of 1950 to

2010 gives 3 mutations, and 1950 to 2040 gives 4 mutations. Global perturbations are

inspired by experiments reducing global levels of TFs using auxin-induced degrons [58].

Here, we study the e�ects of reducing the concentration of yellow TFs by 30%.

Human chromosomes

Our reference case for whole human chromosome simulations in the main text is the mid-

sized human chromosome HSA 14 (107 Mbp), coarse-grained into M = 35784 beads. For Fig.

6, weakly- and strongly-binding beads are identi�ed (using ENCODE data [75] for human

umbilical vein endothelial cells, HUVECs) by the presence of H3K27ac modi�cations and

DNase-hypersensitivity sites (DHSs) in the 3 kbp region corresponding to that bead – as

these are good markers of open chromatin and active TUs (both genic and non-genic),

respectively. For Fig. 6, TUs are split into ones only active in HUVECs and others (“house-

keeping” ones) that are also active in H1-hESC cells (again using DHS sites and ENCODE

data). Then, if a TU appears in both HUVECs and H1-hESCs, it is marked as housekeeping

and coloured red; if it appears only in HUVECs it is marked as HUVEC-speci�c and coloured

green. This allows an intuitive and simple multicolour model of HUVECs to be constructed.

All remaining beads (which are not either weakly-binding or TUs) are non-binding. This

approach represents a generalisation of the DHS model described in [11], so we call it the

multicolour DHS model. For the simulations shown in the main text TF:pols complexes and

TU size is the same (σ, corresponding to 30 nm at our resolution). This is justi�ed by the

fact that our TF:pol represents both transcription factors and polymerases. A polymerase is

about 25 nm in human cells [30], while transcription factors are typically at least 5nm in

size. We also considered the case in which TF:pol size is smaller (0.5σ and 0.16σ, Fig. S9) to

explore the potential e�ect of protein size: as we shall see, this does not qualitatively a�ect

our conclusions and results.

We also consider HSA 18 (80 Mbp, 26026 beads) and 19 (58 Mbp, 19710 beads) in HUVECs,

chosen as they represent gene-poor and gene-rich chromosomes, respectively. Additionally,

we consider HSA 14 in the B-lymphocyte line GM12878 (again, colours are chosen by

combining DHS data for GM12878 and H1-hESCs). H3K27ac and DHS data is again from

ENCODE.

The multicolor DHS model was also applied within a more realistic chromatin framework,

the “highly predictive heteromorphic polymer model”, or HiP-HoP model [17]. This is a

much more sophisticated model which takes into account: (i) loop extrusion; (ii) inactive

(as well as active) chromatin folding; (iii) chromatin heteromorphicity (di�erent local

compaction of chromatin according to acetylation). More details on the HiP-HoP model are

given in the SI.
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For human chromosomes, transcriptional-activity data obtained from simulations and

GRO-seq are compared in two ways [11]. First, we rank activities of each TU, and build a

two-dimensional histogram providing an overview of the agreement between the two sets

of ranks. Second, we quantify Spearman’s rank correlation coe�cient between numerical

and experimental data (SI for more details).
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