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1 Introduction

Drop-based microfluidics is expected to play an important
role in drug discovery (Dittrich and Manz 2006; Dressler
et al. 2014; Kang et al. 2008; Tsui et al. 2013) through
increased efficiency coupled to large-scale parallelization
(Gong et al. 2011; Miller et al. 2012); then many com-
pounds in many different concentrations (Churski et al.
2012; Hong et al. 2016) can be screened in different cell
types (Gao et al. 2013; Yu et al. 2009). It can also facilitate
single-cell analyses (Rodriguez-Rodriguez et al. 2012). In
all these cases, there would be a simultaneous reduction in
volumes and cost. However, current microfluidic systems
suffer from various drawbacks that are limiting wide ac-
ceptance (Sackmann et al. 2014); for example, they often
contain complicated network of channels that are difficult
to fabricate (Friend and Yeo 2010; Mazutis et al. 2013),
they require sophisticated additional machinery (Hansen
et al. 2015; Kellogg et al. 2014), and one chip design is
usually limited to one specific application (Fiorini and
Chiu 2005; Friend and Yeo 2010).

An alternative microfluidic method utilising a Teflon
tube and fluid mechanics, rather than the more common
approach of relying on the geometry of micro-scale chan-
nel networks, has recently been developed (Feuerborn
et al. 2015; Walsh et al. 2016). This method exploits the
interfacial tension between three or more immiscible liq-
uids to create specific fluidic architectures. In this context,
we consider the particular architecture of two aqueous
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Abstract This paper addresses the biocompatibility of
fluids and surfactants in the context of microfluidics
and more specifically in a drops-in-drops system for
mammalian cell based drug screening. In the drops-in-
drops approach, three immiscible fluids are used to ma-
nipulate the flow of aqueous microliter-sized drops; it
enables merging of drops containing cells with drops
containing drugs within a Teflon tube. Preliminary tests
showed that a commonly-used fluid and surfactant com-
bination resulted in significant variability in gene ex-
pression levels in Jurkat cells after exposure to a drug
for four hours. This result led to further investigations
of potential fluid and surfactant combinations that can
be used in microfluidic systems for medium to long-
term drug screening. Results herein identify a fluid
combination, HFE-7500 and 5-cSt silicone oil + 0.25%
Abil EM180, which enabled the drops-in-drops ap-
proach; this combination also allowed gene expression
at normal levels comparable with the conventional drug
screening in both magnitude and variability.
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drops engulfed within one oil drop, which is – in turn –
surrounded by a fluorocarbon. As a result of the liquid
films surrounding drops at different points within the sys-
tem, the relative velocities of the two aqueous drops can be
controlled; the two drops can be forced to merge, and their
contents mixed (Fig. 1).

To create the required fluidic architecture in the
three-phase system, fluids must have the appropriate in-
terfacial tensions. This can be achieved when the inter-
facial tension between the fluorocarbon (FC) and the
aqueous phase (γFC/aq) is greater than the sum of the
interfacial tension between fluorocarbon and oil (γFC/oil)
plus that between oil and water (γoil/aq). In other words,
γFC/aq > γFC/oil + γoil/aq, as defined by the Neumann
triangle (Chen et al. 2007; Guzowski et al. 2012).
This fluidic architecture, and the mechanism that drives
the merging of the two aqueous drops, are illustrated in
Fig. 1. The time needed for the second drop to catch up
the first one depends on the initial spacing between
drops (established when the two drops first enter the
tube) and their relative motion thereafter (Feuerborn
et al. 2015). This relative velocity is influenced by the
thickness of the fluidic film surrounding the drops,
which varies with Capillary number (Ca = ηU/γ, where
η = carrier fluid viscosity and U = average velocity)
(Bico and Quéré 2000; Bretherton 1961).

Many fluid/surfactant combinations can be found that sat-
isfy the Neumann triangle, and allow drops-in-drops to form
and merge. However, for cell-based assays, these fluid/

surfactant combinations must also be biocompatible.
Surfactants are widely used in many other microfluidic drop-
based systems used for biological applications, and – and as
many fluid/surfactant combinations are toxic to cells (Baret
2012; Pang et al. 2006; Partearroyo et al. 1990) – biocompat-
ibility of the liquids used is a general problem. The definition
of a biocompatible environment varies within the microfluidic
literature, and few studies have focused on this in a rigorous
way. One measure used to claim biocompatibility is the ability
to grow cells after they have been through a microfluidic de-
vice (Huang et al. 2015; Liu et al. 2009; Martin et al. 2003).
However, most cells respond to a toxic environment by
arresting growth, and then they may be able to Brecover^
from the sub-optimal environment when returned to a
favourable one. Consequently, cell behaviour may differ in-
side and outside the device. In addition, several authors claim
biocompatibility by citing a previous study using similar
fluids. For example, several articles cite ref. (Clausell-
Tormos et al. 2008) to support proliferation within drops;
however, the original authors (who counted the ratio of living
and dead cells) only found Bsome degree of proliferation with-
in the drops^. Here, we define a biocompatible environment
as one in which the gene expression levels of cells in drops are
comparable to those found using the same cells growing in a
conventional tissue-culture flask. This definition has particular
relevance in the case of a cell grown in suspension like the
Jurkat cell – an immortalized line of human T lymphocytes –
where assessment of cell morphology is more difficult than it
is with adherent cells.

Here we initially utilised the fluid/surfactant concen-
trations employed by others for drop-based microfluidics
using cells (i.e., HFE-7500 and tetradecane + Span 80)
(El Debs et al. 2012; Gu et al. 2011; Hu et al. 2015; Li
et al. 2014; Martin et al. 2003; Schoeman et al. 2014)
with our new approach. We used a low concentration of
surfactant (i.e., 0.25% w/w Span 80) to minimise poten-
tial toxicity. To verify biocompatibility, we first mea-
sured levels of 5S ribosomal RNA (rRNA) in Jurkat
cells, as this is commonly used as a control (Tea
et al. 2013). Levels (quantified using qRT-PCR) in cells
from different drops were found to vary sporadically.
This led us to examine the reason for this sporadic
behaviour, and this was traced to the fluids/surfactants
employed. We then went on to screen many fluid/
surfactant combinations to see which affected cell via-
bility and gene expression. We found that many
commonly-used combinations had negative effects on
cells over periods of a few hours. We also identified a
fluid/surfactant combination (i.e., HFE-7500 as carrier
fluid, 5-cSt silicone oil +0.25% Abil EM180 as separat-
ing fluid, and cell-culture media as the aqueous fluid
containing cells and/or drugs) that could be used in
our system and which was biocompatible (assessed by

Fig. 1 Merging drops-in-drops in a Teflon tube. (i) Initial structure of two
aqueous drops –which contain cells or a drug – engulfed in one oil super-
drop, which is engulfed in turn in a fluorocarbon (FC). This structure
spontaneously forms as the end of the tube (which is connected to a
syringe pump acting in withdrawal mode, and which is pre-filled with
fluorocarbon) is dipped successively into fluorocarbon, oil, growth
medium containing cells, oil, growth medium containing the drug, and
fluorocarbon. (ii) As a result of the oil film surrounding the aqueous drops
and the parabolic laminar-flow profile, the engulfed aqueous drops
containing cells moves faster than the oil. When the right-hand drop
reaches the leading interface of the oil, it slows to travel at the velocity
of the oil. With continued flow, the trailing left-hand drop containing the
drug eventually catches up the leading one containing cells. (iii) Once the
two aqueous drops touch, they merge. (iv) Internal vortices within the
merged drop mix contents. This Figure was adapted from (Feuerborn
et al. 2015)
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comparing viability and expression levels using cells
grown conventionally in micro-wells).

2 Experimental methods

2.1 Interfacial tension measurement

The interfacial tension between two immiscible fluids was
measured using a commercial instrument (First Ten
Angstroms) employing the pendant-drop method. Fluid with
higher density was loaded in a syringe, a small drop was
formed at the tip of the needle, and the drop was immersed
in the second fluid contained in a transparent polystyrene cu-
vette. The interfacial tension was calculated using the manu-
facturer’s software, a length scale (i.e., the width of the needle
tip measured with a micrometre), and fluid density.

2.2 Cell preparation

Jurkat or EL4 (mouse lymphoblast) cells were cultured rou-
tinely in flasks in RPMI-1640 supplemented with 10% fetal
bovine serum and 1% penicillin and streptomycin. They were
used at 500 cells/μl for cell-viability assays (allowing cells to

grow for up to 48 h), or 2000 cells/μl for drug-screening tests
(for 4 h tests).

2.3 Fluid and surfactant biocompatibility test

Different biocompatibility tests with different surface-to-
volume ratios between aqueous drop and separating
fluid were undertaken by overlaying the aqueous layer
containing cel ls with f luid in a 96-well plate
(Fig. 3 a(i)) and using a Teflon tube containing aqueous
drops in two- or three-phase systems (Fig. 3 b(i), Fig. 3
c(i)).

The initial screen involved 150 μl separating fluid
and cells in the same well of a 96-well plate (Fig. 3
a(i)); the non-adherant cells sediment under gravity to
sit on the bottom of the well, or – if the separating
fluid is the densest – on the interface between the two
liquids. After incubating the plate at 37°C in 5% CO2,
the percentage of live cells was determined using
trypan-blue exclusion and a hemocytometer after
mixing equal volumes of cell solution and 0.4% trypan
blue.

The fluids that had no effect on the viability in the initial
screen were tested (Fig. 3 b(i)) by withdrawing drops into a
Teflon tube (bore 560 μm) connected to a syringe pump

Fig. 2 Effects of tetradecane and Span 80 on cell viability and levels of
5S rRNA (Jurkat cells). (a) Two approaches used to assess viability: (i)
no merging, static (2-μl drops in separating oil), and (ii) merging,
dynamic (two 1-μl drops were loaded, and drops merged). (b) Viability
(defined as the percentage of live cells in the population assessed using
trypan-blue exclusion after ‘no merging’ or ‘merging’ followed by a 4-h
incubation. The three phases were growth medium, tetradecane + 0.25%
Span 80, and HFE-7500. ‘Control’: viability after 4 h for the same cells
grown conventionally in a 96-well plate. (c) Approach used for gene

expression analysis. A drop containing cells was merged with another
containing DMSO (the drug carrier). (d) Levels of 5S rRNA (assessed
using qRT-PCR; a low cycle number reflects high levels of 5S rRNA).
Cells were either taken into tubes and ejected immediately (‘0 h’) or
incubated in tubes for 4 h. ‘Drops-in-drops’: cells in the dynamic three-
phase system (HFE-7500, growth medium, and either tetradecane +
0.25% Span 80). ‘Control’: the same cells grown conventionally in 96-
well plate. Error bars: ± standard deviation, *: significantly different (two-
sample t-test, p < 0.05; n (control) = 3, n (drops-in-drops) = 7)
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(Harvard Ultra). The tube was filled with test fluid, 1 μl drops
of cell solution were withdrawn into the tube at a flow rate of
2–5 ml/h, and the tube sealed at both ends and incubated at
37°C in 5% CO2 for up to 48 h. Viability was assessed as
before using trypan-blue exclusion by ejecting fluid from the
tube at a flow rate of 2 ml/h until 10 drops were deposited into
a drop of equal volume of trypan blue.

Biocompatibility was next tested using a static three-phase
system in a Teflon tube containing the fluidic architecture to
be used in a drug screen (Fig. 3 c(i)). In this screening the
selected separating fluids are mixed with surfactant: Span 80
(sorbitan monooleate), Abil EM90, and Abil EM180 (Cetyl
PEG/PPG-10/1 Dimethicone). A tube filled with fluorocarbon
HFE-7500 was dipped successively into fluids contained in
different wells in a 96-well plate; using a flow rate of
2–5 ml/h, the tube was dipped successively into cells (2 μl),
separating fluid ± surfactant (1 μl), and HFE-7500 (5 μl).
Finally, cells were incubated and viability was assessed as
above.

The final biocompatibility test used conditions repli-
cating those found in a drug screen – which involves
flow down the tube to drive the merging of drops and
delivery of drug to cells. First, the tube was filled with
HFE-7500, and – as fluid was withdrawn into the tube
– the end was dipped successively into HFE-7500 (to
load 5 μl), cells in medium (to load a 1 μl drop),
separating fluid (to load 200 μl), cells in medium (an-
other 1 μl drop), and then HFE-7500 (to load 5 μl).
This creates a Btrain^ of aqueous drops; repeating this
process generates further trains separated by 5 μl carrier
fluid.

To test the effect of fluid and surfactant on gene expression,
a drop containing Jurkat cells and one containing 0.5% (v/v)
dimethyl sulfoxide (DMSO) were merged (at least 10 pairs in
one tube). The carrier fluid used was HFE-7500, and the
separating oil was tetradecane + 0.25% Span80 or 5cSt
silicone oil + 0.25% Abil EM180. Five drops were ejected
from the tube immediately after loading and each was put
into separate Eppendorf tubes containing 12 μl BCellsDirect
resuspension and lysis buffer^ (CellsDirect™; Life
Technologies). The remaining drops in the tube were
incubated at 37°C, 5% CO2 for 4 h before being ejected
individually into lysis buffer. This time was chosen because
cells respond to one of the drugs used over this period (Diehn
et al. 2002). As a control, 100 μl cells were plated in a well in a
96-well plate. 2 μl samples were taken from the plate after
incubation for 0 and 4 h and mixed with lysis buffer following
the same procedure used with samples from the drops-in-
drops. Samples from both drops-in-drops and the control were
lysed for 10 min at 75°C. The level of 5S rRNA in each
sample was assessed using qRT-PCR (PCR cycles were
50°C for 20 min, 95°C for 5 min, and 40 cycles at 95°C for
15 s + 60°C for 30 s).

2.4 Proof-of-principle drug screening

3 Results and discussion

3.1 Effects of tetradecane plus Span 80 on viability

HFE-7500 plus tetradecane/Span 80 plus growth medi-
um had surface tensions satisfying the requirements of
the Neumann triangle. When 0.25% Span 80 (weight/
weight) – an oil-soluble surfactant that significantly re-
duces the oil-media interfacial tension from 17.7 to ~1.9
mN/m) – is added to tetradecane, it has little effect on
the interfacia l tension between HFE-7500 and
tetradecane. As this combination had a particularly suit-
able alignment of interfacial tensions for use in our
assay, and the fluids had previously been used for ap-
plications in biology (El Debs et al. 2012; Gu et al.
2011; Hu et al. 2015; Li et al. 2014; Martin et al.
2003; Schoeman et al . 2014), we explored its
biocompatibility.

In our three-phase system, the carrier fluid HFE-7500
engulfs tetradecane and does not contact cells directly;
therefore, the main fluids that might affect cell viability
are tetradecane and Span 80, and their effects were inves-
tigated in two steps. First, as a quick screen, we incubated
cells under a layer of tetradecane (with and without Span
80) in a 96-well plate. Viability (assess using trypan-blue
exclusion) was >90% on exposure for 6 h to tetradecane,
either on its own or with 0.25% or 1% Span 80. We then
examined effects using the drops-in-drops structure in a
tube, with and without drop merging. 0.25% Span 80
was used as the minimum amount of surfactant in
tetradecane that facilitated a reliable merging. There was
no significant impact of merging on cell viability (Fig. 2
b) using a level of 80% as a cut-off – a level that has
been used in previous studies (Du et al. 2013; Qu et al.
2012; Sgro et al. 2007).
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To demonstrate the inhibition and activation of gene expres-
sion in Jurkat cells, the following drugs were used: 100 μM 5,
6-dichloro-1-β-D-ribofuranosyl-benzimidazole (DRB) as in-
hibitor, and 1 μg/ml ionomycin + 62.5 ng/ml phorbol 12-
myristate 13-acetate (PMA) as activator. Jurkat cells and drugs
or 0.5% (v/v) DMSO (as control) were taken into the tube
using the same method as the previous test. The carrier fluid
was HFE-7500 and the separating oil was 5-cSt silicone oil
+ 0.25% Abil EM180. After incubation for 4 h, each sample
was ejected into 12 μl lysis buffer, and treated as for the
previous test. Levels of c-MYC mRNA and IL2 mRNAwere
also assessed using the ΔΔCt qRT-PCR method (Livak and
Schmittgen 2001) and RT-PCR plus gel electrophoresis,
respectively.



We then assessed levels of 5S rRNA in cells in
drops-in-drops before and after 4 h incubation in the
tube (using qRT-PCR). We first tested if loading and
then immediately ejecting drops out of the tube affected
cell number (and so 5S rRNA levels); it did not (in
Fig. 2 d ‘0 h’, cycle numbers for ‘control’ and ‘drops-
in-drops’ are comparable). However, after incubation in
the drops for 4 h, levels fell (in Fig. 2 d ‘4 h’, more
PCR cycles are required for detection). This result
points to a deterioration in cell function. Therefore, we
screened other fluids and surfactants for their potential
use in our approach.

3.2 Screening fluids for effects on viability

To explore alternative fluid/surfactant combinations that
might be used to merge drops, we next listed the fluids/
surfactants that had been used previously with mamma-
lian cells in droplet-based microfluidics (Table 1). In
our three-phase system, one fluid must be cell-growth
medium, and the second is likely to be either HFE-7500
or FC-40 (i.e., the two fluorocarbons used most fre-
quently to carry aqueous drops in microfluidic systems).
Here, we note that HFE-7500 stably maintains the de-
sired architecture of drops-in-drops better than FC-40.

The third fluid has to be immiscible with fluorocarbon
and water – and so probably a hydrocarbon, silicone oil,
or vegetable oil. Addition of surfactants to this third
fluid allows interfacial tensions to be tuned to satisfy
the requirements of the Neumann triangle. However,
surfactants are usually toxic to cells, and so the chal-
lenge is finding an appropriate combination of biocom-
patible fluids and surfactants.

To find which combinations might be appropriate,
biocompatibility was assessed in several steps. First,
two fluorocarbons and seven separating oil candidates
without surfactant were screened using Jurkats and
EL4 cells in a 96-well plate. Viability was quantified
after incubation for 24 and 48 h (Fig. 3 a). As dodecane
and olive oil gave less than 50% viability after 24 h
(with a further reduction after 48 h), they were excluded
from future tests.

The second test focused on the separating oil, leaving
5 candidates: silicone oil AR 20 (‘AR 20’), 5-cSt sili-
cone oil (‘silicone oil’), mineral oil, tetradecane and
hexadecane. Here the final environment was simulated
using only two phases, the separating oil and cells in
the aqueous phase. In the smaller volume where the
surface-to-volume ratio is higher than in the first step,
cells prove to be more sensitive as toxic effects were

Table 1 Fluids and surfactants previously used in drop-based microfluidics with mammalian cells

Fluid Surfactant Cell type

Fluorinated fluids

FC-40 PEG-PFPE block copolymer 2C6 hybridoma (Koster et al. 2008), human U937 (Joensson et al. 2009), Chinese Hamster Ovary
(Chen et al. 2011), human PC3, Raji B lymphocytes (Eastburn et al. 2013),
HL60 (Edd et al. 2008), HEK293T (Juul et al. 2011), K562, U87 (Mongersun et al. 2016)

DMP-PFPE block
copolymer

HEK293T, Jurkat (Clausell-Tormos et al. 2008), Red blood cells (Abbyad et al. 2011; Abbyad et al. 2010)

HFE-7500 PEG-PFPE block copolymer MDA-MB-231, PC9 (Ng et al. 2016), Her2 hybridoma (Hu et al. 2015), RAW 264.7 (Fischer et al. 2015),
mouse ES (Klein et al. 2015), K-562 (Klein et al. 2015; Ng et al. 2016)

FC-3283 Perfluorooctanol (PFO) Red blood cells (Kline et al. 2008), human periosteal cells (Srisa-Art et al. 2009)

Hydrocarbon/silicone/vegetable oils

Hexadecane Span 80 Chinese Hamster Ovary (Zhan et al. 2009), mouse myeloma cells (Kemna et al. 2013)

Tetradecane Span 80 PC12 (Gu et al. 2011), HeLa, CCRF-CEM, Ramos (Li et al. 2014)

Mineral oil Abil EM90 MDCK (Mary et al. 2011)

Span 80 Jurkat, red blood cells (Chabert and Viovy 2008), Chinese Hamster Ovary (Hufnagel et al. 2009),
leukemia cells (Sun et al. 2011), PC3 (Konry et al. 2011), human breast cancer cells

Abil EM90 + Span 80 PC9 (Jing et al. 2015)

Silicone oil - HeLa (Xiao et al. 2010)

Span 80 Mouse B lymphocytes (Sgro et al. 2007)

Soybean oil - Mouse mast cells and B lymphocytes (He et al. 2005)

Oleic acid - HeLa (Tan et al. 2006)
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observed sooner (Fig. 3 b). All separating oils gave
high viability during a short incubation of 4 h, but after
24 and 48 h some toxicity became apparent. For exam-
ple, earlier we saw ~80% viability in tetradecane plus
Span 80 after a 4-h incubation (Fig. 2 b); here, viability
was higher without surfactant, but complete cell death
was observed after 24 h (Fig. 3b). For the next step,
only fluids giving high viability after the longest incu-
bation period (i.e., mineral oil and 5-cSt silicone oil)
were included, even though drug screening would be
carried over a shorter period.

In the third test, 5-cSt silicone oil and mineral oil
were tested for their suitability. Two 1-μl drops of cell
culture media were initially separated by 200 nl oil in
HFE-7500. First, a 1% weight-to-weight surfactant in oil

was used, followed by serial dilution down to the low-
est concentration giving reliable drop merging. As the
two oils have different properties, different surfactant
concentrations allow merging (e.g., 0.5% in mineral
oil, and 0.25% in 5-cSt silicone oil). Next, Jurkats were
incubated in a Teflon tube in 2-μl drops engulfed in
separating fluid/surfactant (and HFE-7500 as the carri-
er), and viability measured (Fig. 3 c). Mineral oil +
Span 80 proved particularly toxic. 5-cSt silicone oil
with all surfactants gave good viability, but Abil
EM180 was selected as the surfactant as it maintained
drop architecture best during incubation.

As a final step, the effects of 5-cSt silicone oil + 0.25%Abil
EM180 in a 3-phase system on levels of 5S rRNAwere tested;
cells in drops-in-drops behave like controls (Fig. 3 d).

Fig. 3 Effects of different fluids
on viability of Jurkats and EL4. (a)
Assay using an over- or under-lay
in a 96-well plate (150 μl test fluid
+ 150 μl cells). (i) Cartoon
illustrating approach (layers
inverted, depending on density).
(ii-iii) Viability after incubation
with different fluids. Dodecane
and olive oil gave poor viability,
and so were not used
subsequently. (b) Assay using 1-μl
drops in a two-phase system in a
tube. (i) Cartoon illustrating
approach. (ii–iii) Viability after
incubation with different fluids.
Mineral oil and silicone oil AR 20
advanced to the next screening
round. (c) Assay using 3-phase
system. (i-ii) Viability of Jurkats
assessed at different times using a
static 3-phase system in a tube.
2 μl aqueous drops were engulfed
in the separating oil indicated,
which – in turn – was engulfed in
HFE-7500. (d) Gene expression
test using selected fluid/surfactant
combination. (i) Cartoon
illustrating approach (HFE-7500
as carrier, 5-cSt silicone oil +
0.25% Abil EM180 as separating
oil). (ii) 5S rRNA levels (assessed
using qRT PCR; a low cycle
number reflects a high level). After
4-h incubation, levels in cells in
drops-in-drops are comparable to
those in cells grown
conventionally
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3.3 A proof-of-principle drug screen

Having established which combination of fluids to use (i.e.,
HFE-7500, 5-cSt silicone oil + 0.25% Abil EM180, medium
containing cells), we performed a proof-of-concept drug
screen (Feuerborn et al. 2015; supplementary information).
DRB (6-dichloro-1-β-D-ribofuranosyl-benzimidazole) is a
general transcriptional inhibitor, and –when a drop containing
it is merged with another containing Jurkats as in Fig. 4a,
levels of c-MYCmRNA (assessed by qRT-PCR) are repressed
(in Fig. 4b, more cycles are required, indicative of depression
of levels). A drug pair – ionomycin plus phorbol 12-myristate
13-acetate (PMA) – initiate an inflammatory response, and
this leads to an increase in levels of interleukin-2 (IL2)
mRNA; when a drop containing the pair is merged with an-
other containing cells, levels of IL2 mRNA (assessed using
RT-PCR and gel electrophoresis) increase (in Fig. 4c, the band
indicative of IL2 mRNA appears). In both cases, cells in
drops-in-drops behave like controls grown conventionally
(Fig. 4a and b). These experiments showed that HFE-7500
and 5-cSt silicone oil + 0.25% Abil EM180 can deliver both
biocompatibility and the interfacial tensions necessary for the
merging of drops in a Teflon tube – and so this combination is
suitable for drug screening using our assay.

4 Conclusion
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Different fluids and surfactants commonly used in drop-based
microfluidic system have been screened for their biocompat-
ibilities. Genetic analysis showed that cell viability alone was
a less reliable indicator of fluid and surfactant biocompatibil-
ity. For drops-in-drops applications involving mammalian
cells, HFE-7500 as the carrier fluid and 5-cSt silicone oil
+ 0.25% Abil EM180 as the separating oil showed

comparable performance in gene expression tests (4 h incuba-
tion time) to the conventional method. Therefore this fluid and
surfactant combination is recommended for drug screening.
Further works need to be done to assess cell proliferation in
the tube for longer time periods using these and/or other
fluids. Although here we assume that the incompatibility
comes from the fluid and surfactant which are in contact with
cell media, there might also be contributions from the tube
material (Jiang et al. 2015; Panaro et al. 2004); hence tube
biocompatibility and alternative tube materials could also be
explored in future works. Finally we suggest that results ob-
tained with many fluid and surfactant combinations and cell-
based microfluidics should be interpreted with caution.
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