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Abstract

The African sleeping sickness parasite Trypanosoma brucei evades the host immune system through antigenic variation of
its variant surface glycoprotein (VSG) coat. Although the T. brucei genome contains ,1500 VSGs, only one VSG is expressed
at a time from one of about 15 subtelomeric VSG expression sites (ESs). For antigenic variation to work, not only must the
vast VSG repertoire be kept silent in a genome that is mainly constitutively transcribed, but the frequency of VSG switching
must be strictly controlled. Recently it has become clear that chromatin plays a key role in silencing inactive ESs, thereby
ensuring monoallelic expression of VSG. We investigated the role of the linker histone H1 in chromatin organization and ES
regulation in T. brucei. T. brucei histone H1 proteins have a different domain structure to H1 proteins in higher eukaryotes.
However, we show that they play a key role in the maintenance of higher order chromatin structure in bloodstream form T.
brucei as visualised by electron microscopy. In addition, depletion of histone H1 results in chromatin becoming generally
more accessible to endonucleases in bloodstream but not in insect form T. brucei. The effect on chromatin following H1
knock-down in bloodstream form T. brucei is particularly evident at transcriptionally silent ES promoters, leading to 6–8 fold
derepression of these promoters. T. brucei histone H1 therefore appears to be important for the maintenance of repressed
chromatin in bloodstream form T. brucei. In particular H1 plays a role in downregulating silent ESs, arguing that H1-
mediated chromatin functions in antigenic variation in T. brucei.
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Introduction

The African trypanosome Trypanosoma brucei is a unicellular

parasite causing African sleeping sickness, which is transmitted by

tsetse flies in sub-Saharan Africa. As an extracellular parasite of

the mammalian bloodstream, T. brucei has evolved a sophisticated

strategy to antigenically vary its major surface coat protein,

variant surface glycoprotein (VSG) [1,2]. The T. brucei genome

contains a vast repertoire of silent VSG genes and pseudogenes,

most of which are located in tandem arrays at subtelomeric

locations [3,4]. The VSG repertoire varies in both size and

composition between different T. brucei strains, with the exact

sizes still unclear due to the technical complications of cloning,

sequencing and assembling these subtelomeric sequences [5].

However, a conservative estimate proposes that the T. brucei 927

strain contains more than 1500 VSGs, of which only one VSG is

expressed at a time [6,7].

The active VSG is located in one of about 15 telomeric VSG

expression sites (ES). ESs are transcribed by RNA polymerase I

(Pol I) [8,9], which normally exclusively transcribes ribosomal

DNA (rDNA) [10]. For antigenic variation to work, it is key that

only one VSG is expressed at a time, and the extensive repertoire of

VSGs is kept transcriptionally silent. These restrictions need to

operate within the context of a T. brucei genome which is primarily

organised as very extensive polycistronic transcription units

constitutively expressed by Pol II [6,11]. Although it is unclear

how ESs are controlled, it has recently been shown that chromatin

remodeling must play a key role in their regulation [12–14].

In eukaryotes DNA is packaged into nucleosomes, whereby

,146 bp of DNA is wrapped around a histone octamer consisting

of two histone H2A/H2B dimers and two histone H3/H4 dimers.

A linker histone H1 (H1) typically interacts with both the

nucleosome and the linker DNA to stabilize higher order

chromatin structure [15]. H1 has been shown to be dispensable

in several unicellular eukaryotes including yeast and Tetrahymena

[16–18]. The exact role of H1 has been surprisingly hard to

discern despite its association with heterochromatin and proposed

function as a general transcriptional repressor [19–23]. Knock-out

of H1 in S. cerevisiae, Tetrahymena or mammalian cells affects

transcription of a relatively small subset of genes in these different

organisms, and does not have a major effect on global

transcription [24–26]. In addition, yeast cells lacking histone H1

demonstrate genomic instability, most likely due to increased

homologous recombination (HR) in its absence [27].
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The chromatin of T. brucei has several unusual properties. The

core histones of T. brucei are divergent compared with those of

higher eukaryotes, particularly at the N-termini which can be post-

translationally modified [28–30]. In addition, T. brucei chromatin

has a more open conformation, does not form 30-nm fibres in vitro,

and chromosomes fail to condense prior to nuclear mitosis [31].

These characteristic features of T. brucei chromatin are typically

influenced by the linker histone H1 in other eukaryotes arguing

that T. brucei H1 could play a different role [15].

Histone H1 proteins in T. brucei are distinct from those in other

eukaryotes, in that they lack the central globular domain thought

to be responsible for interaction with the nucleosome [32]. Instead,

they consist of a single domain corresponding to the C-terminal

domain of H1 proteins in higher eukaryotes [33]. This C-terminal

domain has been shown to be essential for both the DNA binding

and chromatin compaction functions of H1 [33–36]. Single-

domain linker histones are also found in other kinetoplastid

species, as well as in Tetrahymena and in eubacteria [21].

Importantly, this type of truncated H1 protein has been shown to

affect chromatin structure through a mechanism of DNA

compaction which may be mechanistically distinct from higher

eukaryotes [16,37–39].

We have investigated the role of histone H1 in the regulation of

antigenic variation in T. brucei, as well as in the maintenance of

higher order chromatin states. Depletion of histone H1, while

having a minimal effect on cell growth, causes significant changes

in chromatin structure. H1 knock-down resulted in increased

sensitivity to endonucleases in bloodstream T. brucei, but not in the

procyclic form of the parasite which replicates in the midgut of the

insect vector and does not express VSG. In particular, reduced

levels of H1 result in the formation of a more open chromatin

structure in the vicinity of silent ES promoters in bloodstream T.

brucei, which is correlated with an increase in transcription at silent

ESs. Knockdown of a number of chromatin proteins in T. brucei

results in disruption of VSG ES silencing or VSG switching [40–

43]. We now show that histone H1 plays a role in regulating ES

repression, thereby providing a link between this linker histone

and the process of antigenic variation in bloodstream form T.

brucei.

Results

Histone H1 proteins are associated with chromatin in T.
brucei

The T. brucei 927 genome sequence contains five predicted

histone H1-like genes arranged in two clusters on chromosome 11

(Fig. 1A) [3,44]. The predicted T. brucei H1 proteins are small (7–

8 kDa), very basic proteins (pI of ,12) with at least one serine or

threonine residue at the N-terminus. We raised antibodies using

peptides which theoretically should allow recognition of all five T.

brucei histone H1 isoforms. Histone H1 proteins have characteristic

biochemical properties including the ability to be extracted with

perchloric acid [31,37,45]. We therefore isolated H1 proteins from

procyclic form T. brucei using perchloric acid extraction. Several

proteins were enriched, and Western blot analysis confirmed that a

subset reacts with our H1 antibody (Fig. 1B). We compared the H1

species present in either bloodstream or procyclic form T. brucei

using Tricine-SDS-PAGE gels (Fig. 1C). We observed a slightly

different histone H1 banding pattern in the two T. brucei life-cycle

stages [45], possibly due to post-translational modifications of

different H1 isoforms, as has been found in other organisms [46].

Determining the significance of these different banding patterns is

complicated by the fact that our histone H1 antibody may have

different affinities for different isoforms and post-translationally

modified versions of H1. However, it is interesting to note that

other laboratories have observed similar H1 banding patterns

using non-antibody-dependent methods [45].

We next determined the association of T. brucei histone H1 with

chromatin in bloodstream form T. brucei, by isolating chromatin

containing fractions in increasing concentrations of NaCl (Fig. 1D)

[42]. As expected, the core histone H3 remained associated with

the chromatin fraction in all but the highest salt concentration

(0.8 M NaCl), while the RNA binding protein La did not associate

with the chromatin fraction [47]. Histone H1 proteins were

detected in the chromatin fractions at salt concentrations of up to

0.2 M NaCl, indicating association with DNA. However, some

proportion of H1 is soluble in the absence of NaCl. This suggests

that as expected, T. brucei linker histone H1 has a weaker affinity

for chromatin than the core histones [37,45]. Similar results were

obtained using procyclic form lysates (Sup. Fig. S1).

We determined the subcellular localisation of histone H1 using

immunofluorescence microscopy, and identified a strong nuclear

signal in both bloodstream and procyclic form T. brucei (Fig. 2).

Notably, H1 appeared to be depleted from the nucleolus. We

confirmed that the nucleolus was indeed accessible to antibodies

by co-staining with the monoclonal L1C6 antibody which

specifically identifies the nucleolus [48]. This observed relative

depletion of H1 from the nucleolus is presumably a consequence

of the extremely high rates of transcription of the ribosomal DNA

(rDNA) in this location.

Histone H1 is depleted from highly transcribed regions of
the T. brucei genome

We subsequently used chromatin immunoprecipitation (ChIP)

to investigate the genomic distribution of H1 in T. brucei using

either our affinity-purified H1 antibody, or a histone H3 antibody

as a positive control (Fig. 3). We first determined the distribution of

H1 on two extensive nontranscribed regions of the T. brucei

genome. The 50 bp simple sequence repeats form large nontran-

scribed arrays flanking all known VSG ESs (Fig. 3B, 3C) [49]. H1 is

significantly enriched here, as well as on the 177 bp repeats which

Author Summary

Trypanosoma brucei causes African sleeping sickness,
endemic to sub-Saharan Africa. Bloodstream form T. brucei
is covered with a dense coat of variant surface glycopro-
tein (VSG). Only one VSG is expressed at a time out of a
vast repertoire of ,1500 VSGs. The active VSG is
transcribed in a telomeric VSG expression site (ES), and
VSG switching allows immune evasion. Exactly how
monoallelic exclusion of VSG ESs operates, and how
switching between ESs is mediated remains mysterious,
although epigenetics and chromatin structure clearly play
a major role. The linker histone H1 is thought to
orchestrate higher order chromatin structure in eukary-
otes, but its exact function is unclear. We investigated the
role of histone H1 in the regulation of antigenic variation
in T. brucei. We show that histone H1 is associated with
chromatin and is required for higher order chromatin
structure. Depletion of histone H1 results in derepression
of silent VSG ES promoters, indicating that H1-mediated
chromatin functions in antigenic variation in T. brucei.

Histone H1 Regulates VSG Expression Sites

PLOS Pathogens | www.plospathogens.org 2 November 2012 | Volume 8 | Issue 11 | e1003010



Histone H1 Regulates VSG Expression Sites

PLOS Pathogens | www.plospathogens.org 3 November 2012 | Volume 8 | Issue 11 | e1003010



comprise the bulk of the transcriptionally inactive T. brucei

minichromosomes [50].

We subsequently used quantitative PCR (qPCR) to determine

H1 distribution on different transcription units in bloodstream

form T. brucei (Fig. 3D). Statistically significant levels of H1 were

present in RNA polymerase II (Pol II) transcribed regions,

including the actin, c-tubulin, RNA polymerase I large subunit

(Pol I), URA3, paraflagellar rod protein B (PFR) and spliced leader

(SL) gene loci (Fig. 3D). Significantly less H1 was found at the SL

promoter, compared with at the region upstream of the SL gene

(P,0.0001). Similarly, H1 was enriched on the non-transcribed

rDNA spacer compared with the rDNA promoter or the 18S

rRNA gene (P = 0.003, or P = 0.0159 respectively). A similar

pattern was observed at the procyclin locus, where more H1 was

bound upstream of the EP procyclin promoter compared with at

the EP procyclin promoter itself (P = 0.006). Similar results were

found in procyclic form T. brucei (Sup. Fig. S2).

H1 was found associated with ESs using qPCR primers that

detect all ESs. However using primers specific for either the

VSG221 or VSGVO2 ES, we showed that H1 is depleted from the

active VSG221 ES (hygromycin and VSG221 genes) compared with

the silent VSGVO2 ES (neomycin and VSGVO2). Note that the

primer pair for VSGVO2 will also detect an additional non-ES

located copy of VSGVO2. This H1 distribution is similar to that of

the core histones H2A, H3 and H4 [13,14]. H1 is also enriched on

the nontranscribed VSG118 gene located at a chromosome

internal VSG basic copy array. The distribution of H1 in procyclic

form T. brucei is similar, with the exception that H1 does not

appear to be depleted from the SL promoter (Sup. Fig. S2). It is

interesting to note that the Pol II transcribed polycistronic arrays

are not as depleted of H1 as the active ES, implying that a

completely open chromatin structure may not be required for

efficient transcription of these regions.

Depletion of histone H1 leads to a growth defect and
changes in chromatin structure

To study the function of histone H1 proteins in T. brucei, we

performed inducible H1 RNAi using a construct that would be

expected to target all five H1 genes. We cloned two fragments

corresponding to different regions of the polymorphic H1 gene

arrays in tandem into the p2T7-177 vector allowing tetracycline

inducible H1 RNAi [51]. In bloodstream form T. brucei, a small

but reproducible reduction in growth was observed after the

induction of H1 RNAi (Fig. 4A). Western blot analysis revealed

Figure 1. Histone H1 proteins in T. brucei. A. Alignment of predicted histone H1 proteins from the genome sequence of T. brucei 927 [3]. Green
boxes indicate identical residues. Blue boxes indicate N-terminal serine/threonine residues, which may be targets for phosphorylation. Black bars
indicate the peptides used for T. brucei histone H1 antibody production. B. Perchloric acid extraction of histone H1 proteins in T. brucei. Lanes show
total T. brucei cell lysate (lane 1), supernatant after lysis by douncing (lane 2), and the fraction that has been extracted by perchloric acid treatment
(lane 3). The left panel shows the Coomassie stained SDS-PAGE gel, and the right panel shows the Western blot of a Laemmli (glycine-based) SDS-
PAGE gel reacted with an anti-histone H1 antibody. The sizes of marker proteins are indicated in kiloDaltons (kDa). C. Expression of histone H1
proteins in bloodstream form (BF) T. brucei HNI 221+ and procyclic form (PF) T. brucei 221BsrDsRed. Cells were lysed in SDS-PAGE sample buffer and
proteins were resolved on Tris-tricine SDS-PAGE gels which were run for ,5 hours for optimal resolution. The Western blot was probed with the anti-
histone H1 antibody. An antibody against the La RNA binding protein is used as a loading control. Note that different protein standards were used for
Tris-glycine and Tris-tricine SDS-PAGE gels, and that proteins migrate slightly differently using these different methods of electrophoresis. D. The T.
brucei linker histone H1 has less affinity for chromatin than the core histone H3. BF T. brucei cells were lysed in 1% Triton X-100 in the presence of
increasing amounts of NaCl. Pellet and supernatant (Sup.) fractions were analysed by Tris-tricine SDS-PAGE followed by Western blot analysis
monitoring for histone H1, the core histone H3 and the La RNA binding protein. Total indicates total lysate. The concentration of NaCl (M) added
during cell lysis is indicated above the relevant lane. The size of marker proteins in kiloDaltons is indicated.
doi:10.1371/journal.ppat.1003010.g001

Figure 2. Nuclear localization of histone H1 in T. brucei. BF T. brucei HNI 221+ and PF T. brucei 221BsrDsRed cells were fixed and analysed by
immunofluorescence microscopy using anti-histone H1 antibodies (aH1). The monoclonal L1C6 antibody was used to visualise the nucleolus, and a
differential interference contrast (DIC) image is shown. Scale bar is 5 mm.
doi:10.1371/journal.ppat.1003010.g002
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that the different H1 proteins were maximally depleted by

24 hours (Fig. 4B). However H1 levels were already reduced in

the uninduced (0 h) samples compared with in the parental T.

brucei line, presumably as a consequence of leaky transcription of

the RNAi construct [52]. In procyclic form T. brucei, cells

containing the H1 RNAi construct grew slower than the parental

line even in the absence of tetracycline, again presumably due to

leaky transcription (Fig. 4C). Western blot analysis of procyclic

form T. brucei after the induction of H1 RNAi showed that H1

depletion was maximal at 96 hours (Fig. 4D). However, the

additional H1 knockdown observed after induction of H1 RNAi in

procyclic form cells had no further effect on growth. These RNAi

experiments provide evidence for specificity of our anti-histone H1

antibody, as the putative histone H1 proteins detectable by

Western blot indeed decreased after the induction of H1 RNAi

(Fig. 4B and 4D). In addition, RNAi-mediated depletion of histone

Figure 3. Distribution of histone H1 in the T. brucei genome. A. Schematic of the BF T. brucei HNI 221+ cell line used for ChIP experiments
indicated with a large red box. VSG expression sites (ESs) containing the hygromycin (Hyg) or neomycin (Neo) resistance genes, as well as the
telomeric VSG221 (221) and VSGVO2 (VO2) genes are indicated. The ES promoters are indicated with flags, and transcription of the active VSG221 ES
with an arrow. B. Representative slot blots of chromatin immunoprecipitation (ChIP) samples showing the presence of histone H3 or histone H1 on
characteristic 50 bp repeat sequences found flanking ESs, or 177 bp repeats comprising the bulk of the T. brucei minichromosomes. Experiments
were performed with no antibody (No ab) or pre-immune serum (Pre-imm.) from the rabbit used to produce the histone H1 antibody as negative
controls (2). For each immunoprecipitated sample, 10% of the ChIP material was loaded on a slot blot and compared to 0.1% of the total input. C.
Quantitation of material immunoprecipitated (% IP) using anti-histone H3 (H3) or anti-histone H1 (H1) in the slot blots shown in panel B. Bars show
the mean of three experiments with standard deviation indicated with error bars. Two negative controls (2) were used: no antibody, or the pre-
immune serum. D. Distribution of histone H1 within the genome of BF T. brucei as determined using qPCR analysis of ChIP material. The bars indicate
the amount immunoprecipitated (% IP) using the anti-histone H1 antibody (H1) or pre-immune serum (Pre-imm.) as a control, with the standard
deviation in three experiments indicated with error bars. Statistically significant (P,0.01) amounts of histone H1 were immunoprecipitated in all
regions with the exception of the rDNA promoter, 18S rRNA, hygro and VSG221 genes (Supplemental Fig. S3). The RNA polymerase II (Pol II)
transcribed regions analysed are the actin, c-tubulin (c-tub), RNA polymerase I large subunit (pol I), URA3, paraflagellar rod protein B (PFR) and spliced
leader (SL) gene loci. The SL intergenic region (int.), promoter region (pro.), or the SL gene itself (SL) are indicated. The ribosomal DNA (rDNA) regions
analysed include the rDNA intergenic region (int.), promoter (pro.) or the 18S rDNA gene (18S). The EP procyclin locus analysed includes the region
upstream of the EP promoter (up.), the promoter (pro.), or the EP procyclin gene (EP). Higher levels of histone H1 were immunoprecipitated upstream
of the promoters compared with at the promoter regions themselves, with the statistical significance indicated with asterisks (** indicates P,0.01,
and **** indicates P,0.0001). ES sequences analysed include a region immediately upstream of the ES promoter (up.) as well as at the promoter itself
(pro.). These primer pairs can be expected to recognise most if not all ESs. Sequences specific for the active VSG221 ES include the hygromycin
resistance gene (Hygro) as well as VSG221. Sequences present in the silent VSGVO2 ES include the neomycin resistance gene (Neo) and VSGVO2. Note
that the VSGVO2 primers detect both the telomeric ES located VSGVO2 gene, as well as the chromosome-internal copy of VSGVO2. VSG118 is found in
the silent VSG basic copy arrays.
doi:10.1371/journal.ppat.1003010.g003
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H1 leads to a loss of H1 nuclear staining as observed using

immunofluorescence microscopy (data not shown).

We next investigated the role of H1 in the maintenance of T.

brucei chromatin structure using micrococcal nuclease (MNase).

MNase preferentially digests DNA in between nucleosomes, such

that an open chromatin structure is more readily cleaved than

closed chromatin. Bloodstream form parental T. brucei and cells in

which H1 RNAi had been induced were treated with increasing

concentrations of MNase (Fig. 5A). DNA was analysed, and

characteristic ladders corresponding to mono-, di-, and tri-

nucleosomal species were observed (Fig. 5B) [14]. Chromatin

from cells in which H1 RNAi had been induced for 48 hours was

reproducibly more sensitive to MNase digestion compared with

that from the parental line (compare lanes 1 in Fig. 5B). This

indicates that knockdown of H1 results in DNA becoming more

accessible to digestion by MNase, indicating that H1 helps

maintain chromatin in a closed state. Interestingly, this increase

in the accessibility of chromatin to MNase digestion after H1

knockdown was not observed in procyclic form T. brucei (Sup. Fig.

S4). Possibly, the chromatin structure in procyclic form T. brucei is

already more open than that in bloodstream form T. brucei [45],

thereby minimising the impact of H1 depletion.

We next investigated the effect of H1 knockdown on chromatin

structure at different genomic regions in bloodstream form T.

brucei in more detail. We treated permeabilized cells with MNase

and fractionated the different nucleosomal species on sucrose

gradients (Fig. 5C, D). Again, we observed a dramatic increase in

DNA in the mononucleosomal fraction after knockdown of H1

(Fig. 5D). We next pooled DNA fractions according to whether

they primarily contained mono-, di-, di-/tri-, tri-/tetra-, or

.tetranucleosomes. We determined the presence of different T.

brucei genomic regions in the various fractions using qPCR, and

expressed the amount of each qPCR target detected in each pool

as a percentage of the total amount amplified in all pooled

fractions (Fig. 5E). This allowed us to determine changes in the

distribution of different genomic regions across the different

chromatin types, while correcting for any differences in the

amount of material loaded.

Figure 4. RNAi-mediated depletion of histone H1 proteins results in a moderate reduction in growth rates. A. Growth curves of
parental BF T. brucei or two independent BF T. brucei RYT3-H1 clones in the presence (+) or absence (2) of tetracycline to induce histone H1 RNAi. The
mean of three experiments is shown with the standard deviation indicated with error bars. In each case, the cell number was multiplied by the
dilution factor to obtain a value for cumulative cell growth. B. Western blot analysis of Tris-tricine gels showing knockdown of histone H1 in two
independent BF T. brucei RYT3-H1 histone H1 RNAi clones compared with the parental (P) cell line. Histone H1 RNAi was induced with tetracycline for
the time indicated in hours (h). BiP is shown as a loading control. C. Experiment similar to as shown in panel A. performed in PF T. brucei cells. D. A
similar experiment as shown in panel B. performed using PF T. brucei cells. Histone H1 RNAi was induced with tetracycline for the time indicated in
days (d).
doi:10.1371/journal.ppat.1003010.g004
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As expected, sequences in the actively transcribed VSGT3 ES

(blasticidin resistance and VSGT3 genes) were enriched in the

mononucleosomal fraction compared with sequences in the

transcriptionally silent VSG221 ES (puromycin resistance, eGFP

or VSG221 genes) (18–22% of total compared with 6–8%,

respectively) (Fig. 5E). This indicates that as expected, active ESs

have a relatively open chromatin structure, and are preferentially

digested down to mononucleosomes [14]. Interestingly, the Pol II-

transcribed actin, c-tubulin, Pol I large subunit, PFR and URA3

regions, while transcriptionally active, appeared to have a less

open chromatin state (i.e not enriched in the mononucleosomal

fraction) than Pol I transcribed regions. This is similar to as

observed for transcriptionally inactive sequences such as VSG118

(Fig. 5E), and is consistent with the distribution of the core histones

across these regions as was previously determined [14].

After blocking H1 synthesis for 48 hours, several regions of the

T. brucei genome became more accessible to MNase. This effect

was most pronounced at the promoter of the silent VSG221 ES

(puromycin resistance and eGFP genes) (P = 0.0007 and P = 0.0043

respectively) (Fig. 5E). H1 knockdown also resulted in a significant

increase in MNase accessibility at the Pol II transcribed actin

genes, as well as at the nontranscribed VSG118 in the VSG basic

copy array and the regions immediately upstream of the ES and

procyclin promoters (P values,0.05). These data indicate that

depletion of H1 results in a general opening of chromatin

structure, however this effect is particularly clear at the silent ES

promoters. Although depletion of H1 caused changes in chromatin

structure upstream of the procyclin promoter, we did not detect

increases in the levels of procyclin transcript following H1

knockdown (Sup Fig. S5).

Knockdown of histone H1 did not result in obvious changes in

the structure or staining intensity of the nucleus as monitored by

fluorescence microscopy using DNA staining with DAPI (data not

shown). To investigate the effect of histone H1 depletion at the

ultrastructural level, we performed transmission electron micros-

copy (TEM) analysis on parental bloodstream form T. brucei, or

cells where H1 RNAi had been induced for 48 hours (Fig. 6). The

nucleus of T. brucei has particularly darkly stained areas (with an

electron density comparable to that of the nucleolus) which

presumably correspond to heterochromatin. These dark areas are

interspersed with more lightly-stained areas which are likely to

contain euchromatin [53]. We find that H1 knockdown results in a

dramatic loss of the darkly-stained areas (black arrows in Fig. 6),

resulting in a homogeneously-stained nucleoplasm. This is

consistent with our MNase results showing a general increase in

chromatin accessibility after H1 knockdown, indicating that

depletion of H1 has an effect on the structure of heterochromatin

in T. brucei.

Histone H1 is required for silencing VSG ESs in T. brucei
We next investigated if the changes in chromatin structure

observed after H1 depletion had functional consequences for

transcription. The bloodstream form T. brucei RYT3 reporter cell

line has eGFP immediately downstream of the promoter of the

inactive VSG221 ES, allowing ES derepression to be monitored

using GFP fluorescence (Fig. 7A) [42]. Parental T. brucei RYT3

and two independent RYT3-H1RNAi clones were grown in the

presence or absence of tetracycline and monitored by flow

cytometry. Both T. brucei RYT3-H1 clones showed 6–8 fold

derepression of the silent VSG221 ES after four days of induction

of H1 RNAi (Fig. 7B).

In procyclic form T. brucei, all ESs are silenced using a

mechanism that appears to be different from that used in

bloodstream form T. brucei [54–59]. Although H1 knockdown in

procyclic form T. brucei did not result in a detectable change in

accessibility of chromatin to endonucleases, we investigated the

effect on ES silencing. Our procyclic form T. brucei 221BsrDsRed

cell line has the DsRed reporter gene integrated behind the silent

VSG221 ES promoter (Fig. 7C) [42]. Induction of H1 RNAi led to

a modest but reproducible ,3-fold derepression of the VSG221 ES

promoter in two independent clones, indicating that H1 is

required for maximal ES silencing in procyclic form T. brucei

(Fig. 7D). In contrast to the observed derepression at ESs, steady

state levels of actin and c-tubulin transcripts remained constant

after H1 depletion. We also did not observe a significant increase

in precursor transcripts derived from the tubulin array following

knock-down of H1 (data not shown). However, since T. brucei relies

on post-transcriptional regulation of its mRNAs, it is possible that

any putative minor changes in Pol II transcription following H1

knock-down are absorbed by the cell through mRNA degrada-

tion/stability pathways.

VSG switching in the presence of histone H1 depletion
As histone H1 depletion results in transcriptional derepression

of silent ESs, we also investigated the consequences of H1

Figure 5. Chromatin structure in the presence of reduced histone H1. A. Schematic of the T. brucei BF RYT3-H1 cell line in which micrococcal
nuclease (MNase) sensitivity experiments were performed after the induction of histone H1 RNAi. The large blue box indicates the BF T. brucei cell,
with a blasticidin (Bla) gene integrated in the active VSGT3 ES (T3), and the puromycin (Pur) resistance gene and eGFP integrated immediately behind
the promoter of the silent VSG221 ES. The expression site (ES) promoters are indicated with white flags, and ES transcription with an arrow. A
construct allowing tetracycline inducible transcription of histone H1 RNAi (H1) from opposing T7 promoters (facing arrows) has also been introduced
into these cells using a hygromycin resistance gene (Hyg) transcribed from an rDNA promoter (black flag). B. Parental (Par) BF T. brucei RYT3BSR cells
and RYT3-H1 cells in which histone H1 had been knocked down by the induction of RNAi for 48 h (H1+48 h) were permeabilized and incubated with
increasing concentrations of MNase (Lane 1 = 0.0625 units MNase, lane 2 = 0.125 units, lane 3 = 0.25 units and lane 4 = 0.5 units. Isolated DNA was
visualized on ethidium bromide-stained agarose gels, and a characteristic ladder pattern was observed. Products corresponding to DNA that had
been bound to mono-, di, or trinucleosomes, as well as undigested DNA (undig.) are indicated. DNA sizes are indicated in kilobases (kb) on the left. C.
Sucrose gradient fractionation of MNase-digested chromatin from BF T. brucei RYT3BSR cells (Par). Chromatin in permeabilized cells was subjected to
MNase treatment and then loaded onto a 5–30% sucrose step gradient (input). After centrifugation, fractions were removed, and DNA isolated.
Fractions 11–24 are shown with top to bottom of the gradient indicated with an arrow. Fractions 1–10 contained very little DNA and are not shown.
Fractions containing mono-, di-, di-/tri-, tri-/tetra-, and .tetranucleosomes are indicated with white bars. These fractions were used to create five
pools of DNA which were used as templates for qPCR. D. BF T. brucei cells in which histone H1 RNAi had been induced for 48 hours. Chromatin in
permeabilized cells was subsequently subjected to MNase treatment and was further analysed as described in panel C. E. Induction of histone H1
RNAi for 48 hours affects the distribution of various T. brucei genomic regions in the mononucleosomal fractions containing open chromatin. Results
show qPCR analysis of fractionated, MNase-treated DNA. The amount of each target detected in the mononucleosome pool is plotted as a
percentage of the total amount of target detected in all pools. Genomic regions analysed are as indicated in Fig. 3 panel D. The mean of three
independent experiments is shown with error bars indicating standard deviation. Histone H1 knock-down resulted in a statistically significant
increased distribution of various regions in the mononucleosomal fraction, with asterisks indicating statistical significance (*, P,0.05; **, P,0.01; ***,
P,0.001).
doi:10.1371/journal.ppat.1003010.g005
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knockdown on VSG switching frequency. We used a similar

strategy to [60,61], in which a thymidine kinase (TK) gene fused to

a drug resistance gene is integrated in the active VSG221 ES

between the 70 bp repeat array and the telomeric VSG221. In

addition, eGFP and a puromycin resistance gene are integrated

downstream of the VSG221 ES promoter (Fig. 8A). VSG switch

events which cause silencing or loss of the TK gene can be selected

for using the nucleoside analogue ganciclovir (GCV). GCV

resistance can also arise from mutations in the TK gene [62],

however these GCV resistant cells would not have switched their

VSG coat as revealed by anti-VSG221 immunofluorescence.

The presence of the ES-located single copy marker genes allows

the mechanism of VSG switching to be deduced from the

genotype and phenotype of a clone after a VSG switch event

(Fig. 8B). After a VSG gene conversion (GC), the TK and VSG221

genes are lost, while the switched cell remains GFP positive. After

a switch mediated by a telomere exchange, cells are also GFP

positive but retain VSG221. A transcriptional (in situ) switch results

in GFP negative cells without loss of VSG221. Finally, a gene

conversion can occur which initiates at or near the ES promoter,

resulting in the duplication of an entire new ES into the active ES,

thereby resulting in its deletion. These switched cells would be

GFP negative and would have lost all sequences present in the old

VSG221 ES. Alternatively, as previously observed, the same

phenotype can result from an ES in situ switch coupled with

deletion of the active ES [60,61,63,64].

We first established whether H1 knockdown altered the

frequency of GCV resistant clones, which can give an indication

of changes in VSG switching frequency (Fig. 9A). Cells were

removed from drug selection maintaining transcription of the

active VSG221 ES for 48 hours, and H1 RNAi was induced in one

culture of TK-expressing cells. Cultures were subsequently serially

diluted in 96-well plates in the presence of GCV, and positive wells

were scored after 7 days. We observed an average 4-fold increase

in the frequency of generation of GCV resistant clones per

generation after the induction of a block in H1 synthesis for

48 hours in five independent experiments (Fig. 9A; P = 0.0002).

Three cultures of parental cells (without the H1 RNAi construct)

were also examined in independent experiments. The frequency of

generation of GCV resistant clones in the parental cells was ,3-

fold less than in noninduced cells containing the H1 RNAi

construct (P = 0.0086), again indicating leaky production of

dsRNA in the absence of tetracycline.

We next determined the mechanism of VSG switching in clonal

cell lines where H1 RNAi had been induced for 48 hours (n = 7

independent cultures) or had not been induced (n = 4 independent

cultures). Using immunofluorescence microscopy we established if

the GCV resistant clones had indeed switched their VSG221 coat,

Figure 6. Alteration of nuclear ultrastructure in bloodstream form T. brucei after depletion of histone H1. The bloodstream form T.
brucei RYT3BSR parental (Par) and the RYT3-H1C3 histone H1 RNAi cell line (H1C3) were cultured in the presence (48 h) or absence (0 h) of
tetracycline (Tet) and analysed using transmission electron microscopy (TEM). Images show representative sections of nuclei that include the
nucleolus (n) and the nuclear envelope (ne). The nuclei of parental T. brucei or RYT3-H1C3 lines before the induction of histone H1 RNAi have normal
nuclear staining, where the nucleoplasm is divided into domains of greater electron density (black arrowheads), presumably corresponding to
heterochromatin, interspersed with areas of lower density (white arrowheads), presumably corresponding to euchromatin. The nuclei of cells after
the induction of histone H1 RNAi for 48 hours lack the dense chromatin domains. The scale bar represents 500 nm.
doi:10.1371/journal.ppat.1003010.g006
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monitored for GFP expression, and determined the presence or

absence of the VSG221 gene by PCR. Data showing validation of

this strategy to study VSG switching are in Supplementary Figures

S6 and S7. We analysed 33 switched clones derived from

uninduced H1 RNAi cells and 64 switched clones from cells

where H1 RNAi had been induced for 48 hours. In both cases, we

found that the majority of clones had switched by ES gene

conversion or an in situ switch plus deletion of the VSG221 ES

(Fig. 9B). We also analysed 35 switched clones from four

independent cultures derived from an equivalent cell line lacking

the histone H1 RNAi construct (parental, data not shown). Here

too, the majority of VSG switch events involved deletion of the

VSG221 ES. This high frequency of deletion of the VSG221 ES

after a VSG switch has been previously observed [60,61,63,64].

We still do not know why VSG ES deletion events are frequently

picked up in VSG switching experiments with T. brucei 427. VSG

switching experiments performed with T. brucei have shown

variability regarding the predominant VSG switch mechanism

used. Some reports have found that VSG gene conversion is the

most common switching mechanism [60,65], while others have

shown that transcriptional switching between ESs predominates

[66,67]. However, consistent with both these results and those

from other laboratories, deletion of the previously active ES

frequently occurs [60,61,63,64,66]. This phenomenon has been

frequently observed with the VSG221 ES, which is often deleted

during switch events involving a switch to another ES. The

VSG221 ES is unusually large with extensive duplications and

triplications. In addition, it contains unusually short regions of

70 bp repeats which normally facilitate gene conversion [8,9]. As

the VSG221 ES has been hypothesised to have a particularly low

frequency of inactivation, it has been postulated that if the rate of

switch off of this ES drops low enough, telomere deletion events

resulting in its loss are an alternative way of resolving an

unfavourable double-expressor state [64]. This VSG221 ES

deletion event is not a consequence of the TK negative selection

system, as these events have also been uncovered in experiments

using positive selection for ES activation using drugs or negative

selection against VSG221 using VSG RNAi [66].

We attempted to investigate the effect of H1 depletion on VSG

switch events involving DNA rearrangements near the telomeric

Figure 7. Derepression of silent ESs after knockdown of histone H1. A. Schematic of the BF T. brucei RYT3-H1 line, which is as described in
panel 5A. Histone H1 RNAi can be produced from two opposing tetracycline inducible T7 promoters. Transcription of the active VSGT3 ES is indicated
with an arrow, and derepression of the silent eGFP gene located in the inactive VSG221 ES can be monitored by flow cytometry. B. Derepression of
the silent VSG221 ES in BF T. brucei RYT3-H1 as measured by flow cytometry. Representative traces from the indicated time points are shown. Fold
derepression was calculated by dividing the mean fluorescence value from the induced culture by the mean fluorescence value from a corresponding
uninduced culture. The mean from three independent experiments is shown with the standard deviation indicated with error bars. C. Schematic of
the PF T. brucei 221BsrDsRed-H1 cell line used to monitor derepression of a silent VSG ES after knockdown of histone H1. D. Derepression of a silent
ES in PF T. brucei after the induction of histone H1 RNAi as monitored using the fluorescent DsRed protein. Representative flow cytometry traces are
shown. Fold derepression was calculated as in B for three independent experiments with standard deviation indicated with error bars.
doi:10.1371/journal.ppat.1003010.g007
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VSG. We repeated our VSG switching assays in the presence of

puromycin selection to maintain expression of the VSG221 ES.

This procedure selects for cells that continue to transcribe the

active VSG221 ES, but have silenced (through telomere exchange)

or lost (through VSG gene conversion) the HYGTK fusion gene.

As with the previous switching assay, this procedure will also select

for cells with mutations in the TK gene [60,61,63,64]. Using these

conditions we also observed an increase in GCV-resistant clones in

cells containing the histone H1 RNAi construct, although this

frequency did not further increase after induction of H1 RNAi,

presumably as H1 was already significantly depleted in the

noninduced cells containing the H1 RNAi construct (Fig. 9C). We

analysed the VSG switching mechanisms that had occurred in

clonal cell lines derived from at least three independent cultures

each of parental cells (n = 19), uninduced T. brucei H1 RNAi cells

(n = 21), and cells induced for H1 RNAi for 48 h (n = 15). Here we

found that our protocol had enriched for cells that continue to

express VSG221, and are probably TK mutants (Fig. 9D).

However, we also observed that a higher percentage of the

clones in which H1 had been depleted had indeed switched their

VSG via gene conversions, indicating that histone H1 in T. brucei

possibly plays a role in suppressing DNA rearrangements at the

telomeric end of the ES. One possibility explaining these data, is

that what we observe here are two potentially distinct effects of

histone H1 depletion. Leaky H1 RNAi in the uninduced sample

results in an increase in the frequency of TK mutants, but does not

significantly affect the VSG switching frequency. However, further

depletion of histone H1 after tetracycline induction of H1 RNAi

causes an increase in VSG switching frequency.

We next investigated if the rate of DNA recombination in the

Pol II-transcribed URA3 locus was also affected by H1 knockdown.

We didn’t observe dramatic changes in chromatin structure at the

URA3 locus after knockdown of H1, although H1 depletion did

result in an increase in MNase accessibility of chromatin at other

Pol II transcription units (Fig. 5E). However, rates of gene

conversion at loci other than URA3 are difficult to measure in the

Figure 8. Strategy for determination of VSG switching frequencies after blocking histone H1 synthesis. A. Diagram of the BF T. brucei
221pGFPhyTK-H1 cell line used for analysis of VSG switching after histone H1 knock-down. The large red box indicates a cell, with a construct
containing the puromycin (Pur) resistance gene and eGFP integrated immediately behind the active VSG221 ES promoter (indicated with a flag). A
construct containing a fusion protein for hygromycin resistance and thymidine kinase (HYGTK) activity is integrated at the telomeric end of the ES
between characteristic 70 bp repeat sequences (70 bp) and the telomeric VSG221 gene. A silent ES with an unknown VSG (X) is indicated below, as
well as chromosome internal silent VSGs (Y) located in tandem arrays. A construct allowing transcription of histone H1 RNAi (H1) from opposing T7
promoters (arrows) as well as a phleomycin (Phleo) gene transcribed from an rDNA promoter (black flag) has also been introduced. B. Schematic of
VSG switching mechanisms detectable in our assay, adapted from [66]. Switching the active VSG can be mediated through a VSG gene conversion
(GC), telomere exchange (XO), or in situ activation of another ES (in situ). In addition, VSG switch events resulting in loss of the VSG221 ES by either
gene conversion (ES GC) or a deletion event after an in situ switch (in situ+ES del) were identified. Each type of VSG switch event, in addition to
mutations in the TK gene itself (not shown), result in resistance to ganciclovir (GCV). Presence of the single copy VSG221 gene is indicated below
(DNA). In addition, expression of the GFP or VSG221 protein are indicated. The schematic is labeled as indicated in panel A.
doi:10.1371/journal.ppat.1003010.g008
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absence of negative selectable markers which can select for both

alleles. As we could not exclude that minor (and for us

undetectable) changes in chromatin structure were nonetheless

occurring at the URA3 locus which could be affecting DNA

recombination, we used an assay described in [60,61] to measure

the frequency of gene conversion at this locus after H1 knockdown

(Fig. 10A). T. brucei expressing URA3 is sensitive to 5-fluoroorotic

acid (FOA). We replaced one allele of URA3 with the hygromycin

resistance/thymidine kinase fusion gene (HYGTK) in bloodstream

form T. brucei that either did (H1 RNAi) or did not (Par) contain

the H1 RNAi construct. Removal of cells from hygromycin

selection allows gene conversion at the URA3 locus to occur. This

Figure 9. Depletion of histone H1 results in an increase in VSG switching. A. The frequency of generation of ganciclovir resistant (GCVR)
trypanosomes per generation (GCVR tryps/gen) in parental (Par) T. brucei and 221pGFPhyTK-H1 cells in the presence of histone H1 RNAi for the time
indicated in hours (h). Bars indicate the mean of independent experiments [parental n = 3; H1 RNAi cells (0 h and 48 h histone H1 RNAi), n = 5]. The
standard deviation is indicated with error bars. A higher rate of generation of GCVR clones as a measure for VSG switching was observed in
uninduced T. brucei 221pGFPhyTK-H1 cells (containing the histone H1 RNAi construct) compared with parental cells (statistical significance **,
P,0.01). However, there was a statistically significant increase in this frequency after the induction of histone H1 RNAi for 48 hours (***, P,0.001). B.
Mechanism of VSG switching in clones from seven independent cultures after the induction of histone H1 RNAi for 48 hours (n = 64) (purple bars) or
in four independent cultures generated in the absence of histone H1 RNAi (n = 33) (blue bars). The genotypes and phenotypes of the clones were
determined using microscopy and PCR, allowing determination of the VSG switching mechanism used. The percentage of clones that had switched
using each mechanism is plotted. VSG switch mechanisms are as indicated in Figure 8, as well as cells which appeared to have mutated the TK gene
(TK mut.) as determined by their resistance to GCV and continued expression of VSG221. C. Frequency of generation of GCVR clones per generation
(freq/gen) in parental (Par) and 221pGFPhyTK-H1 cells grown in the absence (0 h) or presence of histone H1 RNAi for 48 hours (48 h). These
experiments were conducted in the presence of puromycin to select for DNA rearrangements in the vicinity of the telomeric VSG. Bars indicate the
mean of three independent experiments with standard deviation indicated with error bars. As shown in panel A., cells containing the H1 RNAi
construct show a statistically significant increase in the frequency of ganciclovir resistant cells (statistical significance *, P = 0.024). This frequency does
not further increase after depletion of histone H1 for 48 hours (statistical significance of increase compared with parental *, P = 0.014). D. Increased
VSG switching mediated by gene conversion (GC) in cells depleted for histone H1. VSG switching was monitored in T. brucei 221pGFPhyTK-H1 cells in
the absence (0 h) or presence of H1 RNAi for 48 hours. VSG switching mechanisms were determined in clones derived from at least three
independent cultures for each experiment. All GCVR clones were generated in the presence of puromycin to select for VSG switches mediated by
DNA rearrangements at the telomere of the active ES. VSG switching mechanisms were determined using immunofluorescence microscopy and PCR
as in panel B. Using parental cells (Par) or uninduced histone H1 RNAi cells (0 h) ,90% of the obtained clones (Par n = 19; H1 RNAi 0 h n = 21)
continued to express VSG221, indicating that they are TK mutants (TK mut.). However, when histone H1 RNAi had been induced for 48 hours, less
than half of the generated clones were TK mutants, and ,33% had switched through VSG gene conversion (VSG GC). Clones that had switched
through telomere exchange (Telo XO) were also observed using this assay.
doi:10.1371/journal.ppat.1003010.g009
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results in cells with either two copies of the URA3 gene (which are

sensitive to FOA but resistant to GCV), or two copies of the

HYGTK gene (which are sensitive to GCV but resistant to FOA).

Parental and H1 RNAi URA3/HYGTK T. brucei cells were

expanded for 48 hours in the absence of hygromycin selection.

During this period, one of the H1 RNAi cultures was induced with

tetracycline (H1 RNAi 48 h). We next placed cells under either

FOA or GCV selection, and scored for positive wells after eight

days. Validation of a selection of these clones by PCR confirmed

that, as expected, GCV resistant clones lacked the HYGTK gene

while FOA resistant clones lacked the URA3 gene (data not

shown). The frequency of positive wells in both FOA and GCV-

containing plates was divided by the number of generation times

in the absence of hygromycin to obtain the total frequency of gene

conversion per generation for each sample (Fig. 10B). We did not

observe a significant difference in frequency of gene conversion at

the URA3 locus in parental (Par) or uninduced cells, compared

with cells in which histone H1 had been depleted for 48 hours

(n = 3).

Discussion

We find that the single-domain histone H1 proteins play an

essential role in the maintenance of higher order chromatin

structure in bloodstream form T. brucei. H1 depletion results in a

general disruption of electron dense material in the nucleus which

appears to correspond to heterochromatin. In addition, H1 knock-

down results in an increase in the accessibility of chromatin to

MNase in bloodstream T. brucei, as well as a marked opening of

chromatin structure at the silent ES promoters. In agreement with

this, H1 knockdown results in derepression of silent ES promoters,

and also appears to lead to an increase in VSG switching. These

data all argue that H1 could be one of the layers of control

allowing the parasite to tightly control expression of its extensive

VSG repertoire. H1 knockdown in procyclic form T. brucei resulted

in only moderate derepression of ESs, and no obvious changes in

global chromatin structure as assessed using MNase accessibility. It

is possible that the chromatin of wild-type procyclic form T. brucei

is in a more open state than that found in bloodstream form T.

brucei [45], or alternatively that H1 interacts with chromatin

differently in procyclic form compared with bloodstream form T.

brucei.

T. brucei histone H1 has unusual properties. While H1 proteins

normally have a tripartite domain structure including a central

globular domain flanked by relatively unstructured N- and C-

terminal domains, kinetoplastid H1 proteins have only a single

domain rich in lysine, alanine, and proline residues [33]. Here we

show that T. brucei H1 proteins, while missing domains important

for function in other eukaryotes, can still facilitate higher order

chromatin structure. It is possible that the mechanism by which

single-domain H1 proteins compact chromatin is different from

that used by the tripartite H1 proteins [21]. In T. brucei, both

bloodstream and procyclic form life-cycle stages still grow at

reduced rates even if histone H1 is depleted down to very low

levels. Histone H1 is nonessential in a number of unicellular

eukaryotes [16–18]. Although histone H1 depletion in T. brucei

results in a mild growth phenotype, it is possible that here too these

proteins are not essential. However, in the absence of a true

genetic H1 knockout (complicated by the fact that there are at least

five histone H1 genes) it is not possible for us to establish this point

definitively. It is also unclear if the different isoforms of T. brucei

H1 perform distinct roles or have overlapping functions.

While detailed biochemical analysis of H1 proteins has been

performed in T. brucei, T. cruzi, L. major, and most recently L.

braziliensis, it has not yet been thoroughly investigated how these

proteins function in vivo. T. cruzi has three H1 genes, and

phosphorylation sites of the encoded proteins have been mapped

[68]. Interestingly, phosphorylated H1 seems to be regulated

Figure 10. Histone H1 depletion does not affect recombination frequency at the Pol II-transcribed URA3 locus. A. The experimental
assay for gene conversion is as described in [60,61]. One allele of the URA3 gene (violet box) is replaced by a hygromycin resistance/thymidine kinase
fusion gene (HYGTK) (blue and orange boxes). Gene conversion at this locus either results in cells which have two copies of the URA3 gene and are
sensitive to FOA (FOAS) and resistant to ganciclovir (GCVR). Alternatively, the cells have two copies of the HYGTK gene and are FOA resistant (FOAR)
and sensitive to ganciclovir (GCVS). B. Frequency of gene conversion at the URA3 locus in parental (Par) cells or those containing the histone H1 RNAi
construct. Cells were removed from hygromycin selection for 48 hours, and one culture of H1 RNAi cells had histone H1 RNAi induced for 48 hours.
Cells were then plated in the presence of either GCV or FOA and the number of positive wells were scored after eight days. The value shown is the
sum frequency of FOAR and GCVR clones, which can be considered to have undergone gene conversion (GC), divided by the number of generations
undergone by each cell line. Bars show the mean of three independent experiments with standard deviation indicated with error bars. The
differences between the samples were not statistically significant.
doi:10.1371/journal.ppat.1003010.g010
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according to both the cell and developmental cycle of T. cruzi [68–

70]. The phosphorylated H1 also has a distinct localization

compared to the non-phosphorylated proteins, and is enriched in

the area of the nucleolus [69]. Leishmania species have at least two

H1 proteins (L. brasiliensis has three) [71] that in L. major have been

shown to be developmentally regulated [72]. Overexpression of

H1 in this species affects both chromatin structure and parasite

virulence [38,73]. However, the challenges of working with a

multi-gene family as well as the limited availability of tools for

genetic manipulation, has precluded loss of function analysis of H1

in these organisms.

In addition to providing insight into the role of H1, this study

also provides information on the chromatin structure of T. brucei.

Genomic areas that are actively transcribed by Pol I including the

rDNA, active ESs, and the procyclin loci are highly depleted of

nucleosomes, and have an unusually open chromatin structure

[13,14]. We now find that the linker histone H1 is also depleted

from these highly transcribed Pol I transcription units. Interest-

ingly, histone H1 as well as histone H3 are also depleted from the

procyclin promoter even in bloodstream form T. brucei, where

procyclin loci are transcriptionally silent. This could indicate the

presence of an open chromatin structure associated with ‘paused’

Pol I complexes. Pol I is thought to initiate transcription at

procyclin promoters in bloodstream form T. brucei, which is not

fully processive [74]. In contrast, in Pol II transcription units

including actin, c-tubulin, the URA3 locus and other single copy

genes, the chromatin structure as investigated using histone H1

distribution and MNase accessibility in parental cells appears

comparable to that of silent ESs. This indicates that a highly open

chromatin structure is not a prerequisite for processive Pol II

transcription in T. brucei.

It has previously been found that the T. brucei nucleus is

heterogeneously stained in EM thin sections [6,53,75]. The dark

and lightly-stained nuclear areas are thought to correspond to

heterochromatin and euchromatin respectively, although it is not

clear exactly which genomic regions are located in these areas.

Here, we show that the darker-stained heterochromatic regions of

the nucleus disappear following depletion of H1 in bloodstream

form T. brucei. Our ChIP experiments show that H1 is enriched at

transcriptionally silent regions, including repeat regions and the

VSG basic copy array, which can be assumed to be present in the

form of heterochromatin. As our MNase accessibility experiments

indicate that H1 knockdown causes the chromatin in these areas to

become more open, it is therefore highly likely that the darkly

stained regions of the T. brucei nucleus visualized by EM are in fact

areas of more tightly packaged DNA. It is possible that H1

knockdown also has an effect on other aspects of subnuclear

organization, including telomere clustering and the distribution of

minichromosomes, thereby leading to some of the functional

consequences we observe. Interestingly, knock-down of NUP-1, a

lamin-like protein important for nuclear structure in T. brucei, has

also been shown to affect VSG switching frequency [76]. In

addition, another aspect of nuclear organization, the association of

sister chromatids during mitosis, has been proposed to play a role

in regulation of antigenic variation, as depletion of cohesin

subunits results in an increased VSG switching frequency [77].

What is the role of H1 mediated chromatin structure in an

organism that has little transcriptional control? Although H1

knock-down resulted in an increase in accessibility of chromatin to

nucleases in bloodstream form T. brucei, this effect was not

observed in procyclic form T. brucei. It is clear that one function of

H1 could be to facilitate different processes required for efficient

antigenic variation in T. brucei. We also find that histone H1 plays

a role in silencing inactive ESs particularly in bloodstream form T.

brucei. In contrast, depletion of H1 in S. cerevisiae had no effect on

telomeric silencing [17]. Our results argue that the higher-order

chromatin structure maintained by histone H1 in T. brucei is

critical for complete ES silencing in bloodstream form T. brucei. In

addition to being enriched on silent VSG ESs, H1 in T. brucei also

appears to play a role in maintenance of the closed chromatin state

found at the silent basic copy VSGs. We find that H1 is enriched on

silent VSGs including the VSG118 basic copy gene, and H1 knock-

down results in a more open chromatin structure at this locus.

For antigenic variation to be effective, rates of DNA recombi-

nation need to be suppressed to levels that prevent unnecessarily

rapid depletion of the VSG repertoire. VSG switching rates of the

laboratory adapted T. brucei 427 strain are significantly lower than

in strains which are closer to field isolates [65]. The factors that

contribute to these high VSG switch rates in some isolates have

not yet been determined. However, we feel that the first step is to

identify proteins which modulate the frequency of VSG switching

in experimentally amenable laboratory strains, before verifying

their relevance in the field.

We find that depletion of H1 not only disrupts VSG ES silencing,

but also appears to result in an increase in the frequency of VSG

switching. It is possible that depletion of H1 from the silent ESs causes

an increase in homologous recombination. This is consistent with a

proposed role for H1 in suppressing recombination events and

maintaining genome stability in yeast [27,78]. Homologous recom-

bination plays a major role in VSG switching [2,79]. Depletion of

BRCA2, Rad51 and RAD51-related proteins all decrease VSG

switching frequency, presumably through disruption of homologous

recombination pathways [80–83]. In contrast, knockout of subunits of

the T. brucei RTR complex, which is thought to resolve recombina-

tion intermediates, causes an increase in the VSG switching frequency

[60,61]. Possibly higher-order chromatin structures maintained by

H1 could suppress the formation of recombination intermediates

between the highly similar VSG ESs, as has been found in S. cerevisiae

in the rDNA transcription units [27,78].

Depletion of H1 had a much more dramatic effect on

chromatin structure in the region immediately downstream of

the silent ES promoters compared with at the telomeric VSG gene.

It is possible that in the absence of H1 other factors (such as RAP1)

are still affecting chromatin structure in the region adjacent to the

telomere [84]. Depletion of H1 also affected the chromatin

structure of a VSG located in a basic copy array.

Although our ChIP and MNase accessibility data indicate that

H1 could affect chromatin structure in at least some Pol II

transcription units, knockdown of H1 did not result in increased

MNase accessibility at the URA3 locus. Since H1 knockdown does

not alter chromatin structure at the URA3 locus, it is perhaps

unsurprising that rates of homologous recombination at this locus

do not increase after H1 depletion. Although there was some effect

of H1 depletion on the chromatin of other Pol II loci including

actin or c-tubulin, H1 depletion had a less dramatic effect on the

chromatin structure at these loci compared with at the ES

promoter regions. In S. cerevisiae, histone H1 has been shown to

suppress homologous recombination at the repetitive Pol I

transcribed rDNA loci, but had no effect on homologous

recombination at another locus outside of the rDNA [78].

Here, we show that H1 containing heterochromatin is not only

involved in silencing VSG ES promoters, but could also be involved

in suppressing VSG switching. Our studies on T. brucei histone H1

provide insights into the unique structure and role of chromatin in

these parasites, and these data therefore provide additional

evidence for the key role played by chromatin structure and

remodeling in the processes involved in antigenic variation in these

important human pathogens.
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Materials and Methods

Trypanosome strains and culture
Bloodstream form (BF) T. brucei brucei strain 427 was cultured in

HMI-9 medium [85] supplemented with foetal calf serum (FCS)

and the appropriate drugs at 37uC, 5% CO2. During the course of

these experiments the amount of FCS in the HMI-9 was reduced

from 20% to 15%, with no observable effect on cell growth or the

kinetics of the histone H1 RNAi phenotype. Procyclic form (PF) T.

brucei was cultured in SDM-79 medium supplemented with 10%

FCS, 5 mg/ml hemin, and the appropriate drugs at 27uC. Cell

densities were determined using a haemocytometer.

The BF T. brucei RYT3-H1 cell line was generated by

transfection of the p2T7-H1hy histone H1 RNAi construct into

the T. brucei RYT3 cell line. This parental cell line is based on the

BF T. brucei ‘single-marker’ [86] cell line, and contains a blasticidin

resistance gene in the active VSGT3 ES, and a 221GP1

puromycin/eGFP construct integrated behind the silent VSG221

ES promoter [42,87]. This BF T. brucei RYT3-H1 cell line was

used for experiments monitoring the general phenotype after the

induction of histone H1 RNAi including growth, protein and

transcript levels, micrococcal nuclease (MNase) sensitivity, and

global nuclear architecture as investigated using electron micros-

copy (EM).

For the experiments analysing VSG switching, BF T. brucei

‘single marker’ cells were transfected with the 221GP1 construct

(containing the puromycin and eGFP genes) which integrates

immediately downstream of the active VSG221 ES promoter [87].

Subsequently, the p2T7-H1ph histone H1 RNAi construct

(described below) was introduced and selected for using the

phleomycin resistance gene. Finally, a construct containing a

hygromycin resistance-thymidine kinase fusion gene (HYGTK)

[60](see below) was integrated into the active VSG221 ES between

the 70 bp repeat sequences and the VSG221 gene itself.

To examine the effect of histone H1 depletion in procyclic form

T. brucei, the PF T. brucei DsRed-H1 cell line was created. To do

this, the p2T7-H1ph construct was transfected into the

221BsrDsRed parental T. brucei line [42], which is based on the

T. brucei 29-13 line [86], and contains a blasticidin resistance gene

and a DsRed fluorescent protein gene in the silent VSG221 ES.

Phleomycin selection was used to select for stable integration of the

construct, and clonal cell lines were obtained. ChIP experiments

were performed using the BF T. brucei HNI 221+ [64] and PF T.

brucei 221BsrDsRed cell lines [42].

DNA constructs
Five genes have been annotated as histone H1-like in the T.

brucei brucei genome with the TriTrypDB accession numbers:

Tb11.42.0005, Tb11.42.0006, Tb11.42.0007, Tb11.55.0001, and

Tb11.39.0008. Protein sequence alignments were performed using

ClustalW. To produce double-stranded RNA (RNAi) homologous

to the different polymorphic members of the histone H1 gene

family in T. brucei, two histone H1 fragments (,600 bp each)

corresponding to different histone H1 genes were PCR amplified

from the T. b. brucei 427 genome, and cloned in tandem into the

p2T7-177 RNAi vector which targets T. brucei minichromosomes

[51]. The first histone H1 fragment includes the coding region of

Tb11.42.0005 as well as the intergenic region between

Tb11.42.0005 and Tb11.42.0006, and was amplified using

primers HisH1Con1_183s 59-TATGGATTCAGACAACTGCT-

GTCCCCAAG-39 (BamHI link) and HisH1Con1_884as 59-

TATAAGCTTGAGCAGCAGATGCCTTCG-39 (HindIII link).

The second histone H1 fragment includes the intergenic region

between Tb11.39.0008 and the coding region of Tb11.55.0001,

and was amplified using primers HisH1Con2_524s 59-TA-

TAAGCTTCCCGCTATTAGACACGCTATG-39 (HindIII link)

and HisH1Con2_1173as 59-TATCTCGAGGATGCGCT-

CACGCCTTCT-39 (XhoI link). These two histone H1 fragments

were inserted by triple ligation into the p2T7-177-Hygro or p2T7-

177-Phleo constructs to generate the p2T7-H1hy and p2T7-H1ph

constructs. These contained a ,1.2 kb fragment producing

dsRNA capable of RNAi-mediated knockdown of all five

predicted T. brucei histone H1 genes.

In order to integrate a construct containing the HYGTK fusion

gene into the VSG221 ES, we employed a strategy similar to that of

Kim and Cross, 2009. First, we cut out a ,2.5 kb region of 70 bp

repeat sequence from the construct RM3173 [67] and cloned it

into pBluescript. We next amplified by PCR a region of the

VSG221 ES between the 70 bp repeats and the VSG221 gene using

primers VSG221TAR_55928s 59-TATGGATCCGACGAATA-

CAAACCATAAATAAATGC-39 (BamHI link) and VSG221-

TAR_56433as 59-TATGCGGCCGCCAAGACGTGGTGCAA-

TCATC-39 (NotI link) and cloned it into the same vector. We

finally inserted the HYGTK fusion gene (a generous gift of Nina

Papavasiliou and George Cross) flanked by an upstream tubulin

intergenic region containing an RNA splice site and a downstream

actin intergenic region containing a polyadenylation signal in

between the 70 bp repeat fragment and the VSG221 ES targeting

fragment. The vector was cut with HindIII and NotI prior to

transfection, and correct integration confirmed by PCR linking.

Protein and nucleic acid analysis
To create antibodies specific for T. brucei histone H1 proteins,

two histone H1 peptides were designed, synthesized, and injected

into rabbits (Eurogentec). The T. brucei histone H1 peptide

sequences are: N-KKVAPKKVAGKKAAA-C (amino acids 59–

73 of Tb11.55.0001) and N-AAPKKAVAKKAAPKK-C (amino

acids 6–20 of Tb11.55.0001). Affinity purification of antibodies

specific for these peptides was carried out by Eurogentec. The

specificity of the T. brucei histone H1 antibodies was confirmed

using Western blots comparing lysates from wild-type T. brucei with

lysates from T. brucei after RNAi-mediated knockdown of histone

H1. To create antibodies specific for VSG221, a ,500 bp

fragment was amplified by PCR using primers VSG221Ab_243s

59-GCAAGTATATACGCTGAAATAAATCAC-39 and VSG-

221Ab_741as 59-TGTTTGGCTGTTCGCTACTGTGAC-39

and cloned into the pRSETA vector (Invitrogen) for expression

of an N-terminally tagged 66-His-tagged protein. Protein was

purified under denaturing conditions and was used for immuni-

sation of rabbits (Eurogentec).

Tris-Tricine SDS-PAGE electrophoresis was performed with

16% polyacrylamide gels before being transferred to PVDF

membrane (GE Healthcare) using standard protocols. Blots were

probed with affinity-purified anti-histone H1 peptide antibodies,

anti-histone H3 antibody (ab1791, AbCam), anti-La antibodies (a

gift from Elisabetta Ullu), or anti-BiP (a gift from Jay Bangs).

Detection of the appropriate peroxidase-coupled secondary

antibody was performed using ECL Plus (Amersham) detection kit.

To determine the affinity of histone H1 for chromatin in T.

brucei strain (BF) HNI 221+ or (PF) 221BsrDsRed, 16107 cells per

sample were centrifuged at 1000 rcf for 7 min. Cell pellets were

washed twice and the supernatants removed. For ‘‘total’’ samples,

cell pellets were resuspended in 200 ml hot Tricine SDS-PAGE

sample buffer. For other samples, cell pellets were resuspended in

PBS+1% Triton X-100 containing either 0, 100, 200, 400, or

800 mM NaCl. Roche protease inhibitors (2EDTA) were also

included in each lysis solution. Lysates were incubated on ice for

20 min, followed by centrifugation at 16000 rcf for 20 min at 4uC.
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25 ml of each supernatant was removed to a fresh tube. Hot 26
Tricine SDS-PAGE buffer (25 ml) was then added to each

supernatant and samples were boiled for 5 min. The rest of the

supernatant was discarded from each sample, and the pellets

resuspended in 200 ml hot Tricine SDS-PAGE sample buffer. All

other protein lysates were prepared by resuspension of a washed

cell pellet in hot Tricine sample buffer to a final concentration of

105 cell equivalents per ml.

RNA isolation, cDNA production and qPCR analysis of steady

state transcript levels was performed as described in Narayanan et

al 2011 [43].

Perchloric acid extraction of histone H1 proteins
T. brucei PF 221BsrDsRed cells (16109) were centrifuged at

1000 rcf for 10 min and washed twice with 10 ml trypanosome

wash solution (100 mM NaCl, 3 mM MgCl2, 20 mM Tris-HCl

pH 7.5 at 4uC [88]. The cells were then washed once in 10 ml

transcription buffer (150 mM sucrose, 20 mM L-glutamic acid,

20 mM HEPES-KOH pH 7.7, 3 mM MgCl2, 1 mM DTT,

Roche complete protease inhibitors 2EDTA, and Sigma phos-

phatase inhibitor cocktails 2 and 3), at 4uC [88]. The cell pellet

was resuspended in 300 ml transcription buffer and kept on ice for

20 min. Cells were lysed by douncing using short burst of rapid

strokes for 45 minutes on ice using a Wheaton 2 ml dounce as

modified from [88]. Lysis (.80%) was confirmed by light

microscopy, then cells were centrifuged at 16000 rcf for 10 min

at 4uC. After removal of the supernatant, the pellet was

resuspended in 200 ml 5% perchloric acid, and incubated on ice

for 40 min [89].

The sample was then centrifuged at 16000 rcf for 20 min at

4uC, and the supernatant transferred to fresh tubes (100 ml/1.5 ml

tube). Proteins were precipitated using acetone, and dried pellets

were resuspended in Laemmli SDS-PAGE sample buffer. Samples

were boiled for 5 min before loading on Tris-glycine SDS-PAGE

gels for analysis using standard protocols.

Immunofluorescence microscopy
For localization of histone H1 proteins, immunofluorescence

microscopy was performed essentially as described [43]. T. brucei

BF HNI(221+) and PF 221BsrDsRed cells were used. Histone H1

was detected using the affinity purified T. brucei anti-histone H1

peptide antibody and an Alexa-594-conjugated anti-rabbit sec-

ondary antibody (Invitrogen). The T. brucei nucleolus was detected

using the monoclonal L1C6 antibody (Devaux et al 2007)(a gift

from Keith Gull) and an anti-mouse Alexa-488-conjugated

secondary antibody (Invitrogen). Slides were visualized on a Zeiss

Axio Imager.M1 microscope equipped with a Zeiss AxioCam

MRm camera using AxioVision Rel 4.8 software. Images were

cropped and brightness and contrast uniformly adjusted using

Adobe Photoshop.

Chromatin immunoprecipitation
Chromatin immunoprecipitation (ChIP) experiments were

performed as described [14]. Histone H3 was immunoprecipitated

using an anti-H3 antibody (ab1791, AbCam) and served as a

positive control for the ChIP procedure. A cross-linked sample in

which no antibody had been added served as a negative control.

For ChIP of histone H1 proteins, 20 ml of affinity-purified histone

H1 antibody was used, with 20 ml of pre-immune serum from the

same rabbit used as a negative control. Analysis of the ChIP

material was performed using either quantitative PCR (qPCR)

using the primer sets described in [14] or by slot-blotting and

hybridization with radio-labelled probes as described [14]. All

qPCR reactions were performed with Agilent Technologies

Brilliant II SybrGreen qPCR master mix with low ROX on an

Applied Biosystems 7500 Fast Real-Time PCR system. All

statistical analyses are unpaired, two-tailed t-tests with a 95%

confidence interval, and were performed using GraphPad Prism

software.

Micrococcal nuclease treatment and sucrose gradient
fractionation

Micrococcal nuclease (MNase) treatment of chromatin was

performed essentially as described [14]. For small-scale prepara-

tions, 26107 cells per sample were permeabilized with digitonin

and treated with either 0.0625, 0.125, 0.25, or 0.5 units of MNase

(Worthington Biochemicals). Isolated DNA was then loaded on a

gel, and bands quantitated using ImageJ. For MNase treatment

followed by sucrose gradient fractionation, 2–36108 cells per

sample were permeabilized and treated with 2.5 units MNase per

16108 cells. Solubilised chromatin was then loaded onto a 5–30%

discontinuous sucrose gradient, and the different nucleosome

species were fractionated by ultracentrifugation at 40,000 rpm

(Beckman SW41 Ti rotor) for 16 h at 4uC. Fractions were treated

with proteinase K and RNase A, and DNA isolated by phenol-

chloroform extraction followed by ethanol precipitation. After

visualization of some of the isolated DNA on a gel, the remaining

DNA fractions were pooled into mono-, di-, di/tri-, tri-tetra-, and

.tetra nucleosomal fractions. The amount of each DNA target

present in each fraction was determined by qPCR using primer

sets described in [14]. The summed amount of each target

detected in all fractions was designated as the ‘‘total’’ amount, and

the amount detected in the mononucleosome fraction was plotted

as a percent of that total.

Transmission electron microscopy
Cells were fixed in 2.5% glutaraldehyde, post-fixed in 1%

osmium tetroxide and stained with 2% uranyl acetate before

dehydration through a series of different ethanol concentrations

and embedding in Agar 100 epoxy resin. Thin sections (90 nm)

were stained with lead citrate and examined using an FEI Tecnai

12 transmission electron microscope at 80 kV according to [90].

Flow cytometry
Derepression of the silent VSG221 ES in the T. brucei BF RYT3

and PF 221BsrDsRed cell lines was monitored by flow cytometry

as described [40,42,43] with minor modifications. Briefly, histone

H1 RNAi was induced with the addition of 1 mg/ml tetracycline.

At each time point, ,16106 cells were centrifuged, washed, and

fixed in 2% paraformaldehyde for one hour at room temperature.

Fixed cells were then washed and analysed by flow cytometry

using a Becton-Dickinson FACSCalibur and CellQuest software

(BD). For each time point, fold derepression was calculated by

dividing the mean FL1-H or FL2-H fluorescence value of induced

cells by the mean fluorescence value of the uninduced cells.

VSG switching experiments and analysis of switch
variants

To determine VSG switching frequencies and mechanisms, we

employed a strategy similar to that used in [60,61] with some

modifications. We created the T. brucei 221pGFPhyTK cell line,

which contains a construct containing a puromycin and eGFP gene

immediately downstream of the promoter in the active VSG221

ES, and a construct containing the HYGTK fusion protein gene

downstream of the 70 bp repeats in the same ES. The T. brucei

221pGFPhyTKH1 cell line contains the same marker genes as

221pGFPhyTK with the addition of the p2T7-H1ph RNAi
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construct. We maintained both T. brucei 221pGFPhyTK (parental)

and T. brucei 221pGFPhyTKH1 cells under puromycin and

hygromycin selection to select for a homogenous population

expressing the VSG221 ES. We subsequently removed these cells

from drug selection and allowed them to switch for 48 hours.

Tetracycline (1 mg/ml) was added to an additional culture of T.

brucei 221pGFPhyTKH1 cells to induce RNAi of histone H1, also

for 48 hours. Cells were then plated in 3-fold serial dilutions in the

presence of 4 mg/ml ganciclovir (GCV) (Sigma), and VSG

switching frequencies were calculated based on the number of

positive wells (containing growing cells), the number of cells plated

for each dilution, and the number of generations undergone in the

absence of drugs. We have determined the plating efficiency of the

different cell lines using different experimental conditions (i.e. in

the presence or absence of various drugs) and did not find a clear

difference in plating efficiency (data not shown). We therefore did

not normalise our data for this variable. However as the T. brucei

lines capable of histone H1 RNAi have a longer generation time

than parental cells, we expressed our data as switch/recombina-

tion events per generation. However, the effect of H1 depletion is

also apparent even when the data is not normalised for number of

generation times.

Individual switched clones were analysed for GFP fluorescence,

VSG221 expression (using immunofluorescence microscopy), and

PCR for the VSG221 gene (primers VSG221_243s 59-GCAAG-

TATATACGCTGAAATAAATCAC-39 and VSG221_741as 59-

TGTTTGGCTGTTCGCTACTGTGAC-39). PCR amplifica-

tion of the large subunit of RNA polymerase I was performed as

a positive control (Pol1_4102s 59-CTGGATCCAGCGCCGTTC-

CACGCGAGA-39 and Pol1_4554as 59-GACTCGAGCTAT-

CCCCAATCCGTGCCGTCCCG-39). Pulsed-field gels were

performed essentially as described [63]. The gel was stained and

processed for blotting onto Hybond XL membrane (GE

Healthcare) and probed for VSG221 and VSG1.8 using standard

protocols. The probes were amplified by PCR using

VSG221_121s 59- TGCCAGGTCTCCGAG-39, VSG221_1056-

as 59-GCTGCTCGGATATGAGCTTTT-39, VSG1.8_179s 59-

CAATCTCGAGGCTCACAAAAGTCTG-39, and VSG1.8_10-

22as 59-GCTGGGATCCTAGCCTCGAAAAATG-39.

URA3 gene conversion assay
Determination of the frequency of gene conversion at the T.

brucei URA3 locus was performed as described [60,61]. Briefly, the

pyrFEKO-HYG construct (a gift from G. Cross) containing

targeting fragments for the URA3 gene (Tb927.5.3810) flanking a

hygromycin resistance/thymidine kinase fusion gene was trans-

fected into both BF T. brucei 221pGFP cells or BF T. brucei

221pGFPH1 cells (containing the histone H1 RNAi construct).

Correct integration of the construct was confirmed by PCR

amplification using primers URA3uplink_9228s (59-AGAAA-

GAACCGTACCGCAGA-39) and Hygro_125as (59-CCTA-

CATCGAAGCTGAAAGCAC-39) for upstream linking and

TKlink_2370s (59-TTTACGGGCTACTTGCCAAT-39) and

URA3dnlink_12374as (59-AGGGGGAAACAGCGTAAGTT-39)

for downstream linking. Cells were grown in the absence of

hygromycin selection for 48 hours. Cells were then plated (56105

cells per sample) in the presence of either 6 mg/ml 5-Flouroorotic

acid (Sigma) or 30 mg/ml GCV. Plates were scored 8 days later,

and the gene conversion frequency was calculated by dividing the

frequency of positive wells for each selection method by the

number of doubling times undergone by each culture in the

absence of hygromycin.

Supporting Information

Figure S1 Association of histone H1 proteins with
chromatin in procyclic form (PF) T. brucei. T. brucei

221BsrDsRed cells were lysed with 1% Triton X-100 in the

presence of increasing concentrations of NaCl (molarity indicated

above the lanes). Total indicates total lysate. Pellet and

supernatant (Sup.) fractions were analysed by Western blotting

with antibodies against histone H1, histone H3 or the RNA

binding protein La. The size markers in kiloDaltons (kDa) are

indicated on the left.

(TIF)

Figure S2 Genomic distribution of histone H1 in
procyclic form T. brucei. A. Schematic of the procyclic form

(PF) T. brucei PF 221BsrDsRed cell line used for ChIP experiments

indicated as a large box containing two relevant ESs. The

blasticidin (Bla) resistance gene and the DsRed gene are inserted

immediately behind the promoter (white flag) of the VSG221 ES.

The VSGVO2 ES is shown below. B. Representative slot blots

showing the association of histone H1 and histone H3 proteins

with 50 bp repeat sequences flanking ESs, or 177 bp repeat

sequences which comprise the T. brucei minichromosomes.

Experiments were performed with no antibody (No ab) or pre-

immune serum (Pre-imm.) as negative controls. For each sample,

10% of the ChIP material was loaded on a slot blot and compared

with 0.1% of the total input. C. Quantitation of material

immunoprecipitated (% IP) using anti-histone H3 (H3) or anti-

histone H1 (H1) in the slot blots shown in panel B. Bars show the

mean of three experiments with standard deviation indicated with

error bars. Two negative controls were used, no antibody (No ab)

or pre-immune serum (pre-im) from the rabbit used to produce the

histone H1 antibody. D. Distribution of histone H1 within the

genome of procyclic form T. brucei as determined using qPCR

analysis of immunoprecipitated material. The bars indicate the

amount precipitated (% IP) using the anti-histone H1 antibody

(H1) or the pre-immune serum (Pre-imm.) with the standard

deviation from three experiments indicated with error bars.

Statistically significant amounts of histone H1 (P,0.05) were

found at all loci. The regions analysed include the actin, c-tubulin

(c-tub) and spliced leader (SL) gene loci. The SL intergenic region

(int.), promoter region (pro.), or the SL gene itself (SL) are

indicated. The ribosomal DNA (rDNA) regions analysed include

the rDNA intergenic region (int.), promoter (pro.) or the 18S

rDNA gene (18S). The EP procyclin locus analysed includes the

region upstream of the EP promoter (up.), the promoter (pro.), or

the EP procyclin gene (EP). A higher level of histone H1 was

immunoprecipitated upstream of the rDNA promoter compared

with at the promoter region itself, with the statistical significance

indicated with asterisks (** indicates P,0.01). ES sequences

analysed include a region immediately upstream of the ES

promoter (up.) as well as the ES promoter itself (pro.) with these

primer pairs expected to recognise most if not all ESs. Sequences

analysed within the VSG221 ES include the blasticidin resistance

gene (Blast) and the telomeric VSG221. VSG118 is located in the

silent chromosome internal VSG arrays.

(TIF)

Figure S3 Statistically significant chromatin immuno-
precipitation (ChIP) using anti-histone H1 antibody
compared with pre-immune serum. Different T. brucei

genomic regions are indicated in the table. ChIP was performed in

both bloodstream form and procyclic form T. brucei. The P values

are shown for the ChIP performed using anti-histone H1 anti-

Histone H1 Regulates VSG Expression Sites

PLOS Pathogens | www.plospathogens.org 17 November 2012 | Volume 8 | Issue 11 | e1003010



serum compared with the pre-immune serum, with the signifi-

cance of the results indicated with asterisks.

(TIF)

Figure S4 Histone H1 depletion in procyclic T. brucei
does not result in an increase in open chromatin. Parental

procyclic form (PF) T. brucei 221BsrDsRed (Par) or cells in which

histone H1 had been depleted using RNAi for four days (H1+4 d)

were permeabilized, and the chromatin digested with increasing

amounts of micrococcal nuclease (MNase). Lanes contain material

digested with different MNase concentrations (Lane 1 = 0.0625

units MNase, lane 2 = 0.125 units, lane 3 = 0.25 units, lane 4 = 0.5

units). Purified DNA was subsequently analysed on agarose gels

stained with ethidium bromide. DNA corresponding to mono-, di-

and tri-nucleosome species are indicated, along with undigested

DNA. A representative gel is shown.

(TIF)

Figure S5 Depletion of histone H1 has a minimal effect
on steady-state transcript levels derived from the c-
tubulin, EP procyclin and 18S rRNA gene loci. RNA was

isolated from indicated time points in hours (h) following induction

of histone H1 RNAi, and used as templates for cDNA production.

Quantitative PCR (qPCR) was then performed. Relative levels of

each transcript were determined, first after normalization to actin,

and next in comparison with the level of each transcript at the

0 hour timepoint. Error bars indicate the standard deviation from

three independent experiments.

(TIF)

Figure S6 Confirmation of VSG switching mechanisms
through genotype analysis. A. The presence of the single copy

VSG221 gene was determined using PCR. Representative PCR

reactions were analysed on 1% agarose gels with the gene

encoding the RNA polymerase I (Pol I) large subunit used as a

positive control. Genomic DNA from single-marker BF T. brucei

cells was analysed as a positive control for the presence of the

VSG221 gene (lane 1). DNA from a cell line which has deleted the

VSG221 ES as a result of a switch event was used as a negative

control (lane 2). DNA from clones which have undergone an in situ

switch is shown in lanes 7, 11 and 17. DNA from a clone which

has switched as a result of a gene conversion is shown in lane 13.

DNA from clones which have switched as a consequence of an ES

gene conversion or deletion event is shown in lanes 2–4, 6, 8–10,

14–16 and 18. DNA from clones which have not switched their

VSG, but contain a mutation in the TK gene is shown in lanes 5,

12 and 19. B. Pulsed field gel electrophoresis (PFGE) analysis

confirms the presence or absence of the VSG221 gene in a

representative selection of switched clones as determined using

PCR in panel A. An ethidium bromide (EtBr) stained PFGE gel of

T. brucei chromosomes is shown with a DNA marker (L) indicated

in megabases (Mb) on the left. The gel was subsequently blotted

and probed for VSG221 or VSG1.8. DNA from the unswitched

parental control is shown in lane 1 compared with various clones

which have switched their VSG. DNA from clones which have

undergone an ES gene conversion or deletion (ES GC/ES del)

(lanes 2–5), an in situ switch (lanes 6–8) or a VSG gene conversion

(VSG GC) (lane 9) are shown in comparison. The blots were

probed for both VSG1.8 and VSG221, which appear to be located

on the same chromosome. This allows us to monitor the VSG221

containing chromosome, even in clones where the VSG221 gene

has been deleted. This can reveal changes in chromosomal size

resulting from deletions of large regions of the chromosome after

VSG switching (consistent with the results of [63]). In several clones

(lanes 3–5), the VSG221 ES deletion event is indeed significant

enough to alter migration of this chromosome. The unshifted

VSG1.8 band that remains in clones 3–5 is most likely due to

hybridisation of the probe with a VSG1.8 gene on a chromosome

that remains in the compression zone. Panels A and B show the

analysis of different sets of switched clones.

(TIF)

Figure S7 Analysis of VSG switching using fluorescence
microscopy. Fixed T. brucei was subjected to immunofluores-

cence using an anti-VSG221 antibody. Cells were also monitored

for GFP fluorescence, and DNA stained with DAPI. A differential

interference contrast (DIC) image is shown for reference. For each

channel, a similar exposure time was used to image the different

clones. Scale bar is 10 mm.

(TIF)
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